Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marlène Mengoni is active.

Publication


Featured researches published by Marlène Mengoni.


Journal of The Mechanical Behavior of Biomedical Materials | 2015

Derivation of inter-lamellar behaviour of the intervertebral disc annulus

Marlène Mengoni; Bethany J. Luxmoore; Vithanage N. Wijayathunga; Alison C. Jones; Neil D. Broom; Ruth K. Wilcox

The inter-lamellar connectivity of the annulus fibrosus in the intervertebral disc has been shown to affect the prediction of the overall disc behaviour in computational models. Using a combined experimental and computational approach, the inter-lamellar mechanical behaviour of the disc annulus was investigated under conditions of radial loading. Twenty-seven specimens of anterior annulus fibrosus were dissected from 12 discs taken from four frozen ovine thoracolumbar spines. Specimens were grouped depending on their radial provenance within the annulus fibrosus. Standard tensile tests were performed. In addition, micro-tensile tests under microscopy were used to observe the displacement of the lamellae and inter-lamellar connections. Finite elements models matching the experimental protocols were developed with specimen-specific geometries and boundary conditions assuming a known lamellar behaviour. An optimisation process was used to derive the interface stiffness values for each group. The assumption of a linear cohesive interface was used to model the behaviour of the inter-lamellar connectivity. The interface stiffness values derived from the optimisation process were consistently higher than the corresponding lamellar values. The interface stiffness values of the outer annulus were from 43% to 75% higher than those of the inner annulus. Tangential stiffness values for the interface were from 6% to 39% higher than normal stiffness values within each group and similar to values reported by other investigators. These results reflect the intricate fibrous nature of the inter-lamellar connectivity and provide values for the representation of the inter-lamellar behaviour at a continuum level.


Journal of Computational and Applied Mathematics | 2010

Isotropic continuum damage/repair model for alveolar bone remodeling

Marlène Mengoni; Jean-Philippe Ponthot

Several authors have proposed mechanical models to predict long term tooth movement, considering both the tooth and its surrounding bone tissue as isotropic linear elastic materials coupled to either an adaptative elasticity behavior or an update of the elasticity constants with density evolution. However, tooth movements obtained through orthodontic appliances result from a complex biochemical process of bone structure and density adaptation to its mechanical environment, called bone remodeling. This process is far from linear reversible elasticity. It leads to permanent deformations due to biochemical actions. The proposed biomechanical constitutive law, inspired from Doblare and Garcia (2002) [30], is based on a elasto-viscoplastic material coupled with Continuum isotropic Damage Mechanics (Doblare and Garcia (2002) [30] considered only the case of a linear elastic material coupled with damage). The considered damage variable is not actual damage of the tissue but a measure of bone density. The damage evolution law therefore implies a density evolution. It is here formulated as to be used explicitly for alveolar bone, whose remodeling cells are considered to be triggered by the pressure state applied to the bone matrix. A 2D model of a tooth submitted to a tipping movement, is presented. Results show a reliable qualitative prediction of bone density variation around a tooth submitted to orthodontic forces.


Computer Methods in Biomechanics and Biomedical Engineering | 2015

An enhanced version of a bone-remodelling model based on the continuum damage mechanics theory

Marlène Mengoni; Jean-Philippe Ponthot

The purpose of this work was to propose an enhancement of Doblaré and Garcías internal bone remodelling model based on the continuum damage mechanics (CDM) theory. In their paper, they stated that the evolution of the internal variables of the bone microstructure, and its incidence on the modification of the elastic constitutive parameters, may be formulated following the principles of CDM, although no actual damage was considered. The resorption and apposition criteria (similar to the damage criterion) were expressed in terms of a mechanical stimulus. However, the resorption criterion is lacking a dimensional consistency with the remodelling rate. We propose here an enhancement to this resorption criterion, insuring the dimensional consistency while retaining the physical properties of the original remodelling model. We then analyse the change in the resorption criterion hypersurface in the stress space for a two-dimensional (2D) analysis. We finally apply the new formulation to analyse the structural evolution of a 2D femur. This analysis gives results consistent with the original model but with a faster and more stable convergence rate.


International Journal for Numerical Methods in Biomedical Engineering | 2012

A non-linear homogeneous model for bone-like materials under compressive load.

Marlène Mengoni; Romain Voide; Charlotte de Bien; Hélène Freichels; Christine Jérôme; Angélique Léonard; Dominique Toye; Ralph Müller; G. H. Lenthe; Jean-Philippe Ponthot

Finite element (FE) models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. In order to simulate non-linear behavior, which currently is only feasible at the expense of extremely high computational costs, coarser models can be used if the local morphology has been linked to the apparent mechanical behavior. The aim of this paper is to implement and validate such a constitutive law. This law is able to capture the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using an elastoplastic material model incorporating hardening. These features are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strain framework. This material model was implemented into metafor (LTAS-MNNL, University of Liège, Belgium), a non-linear FE software. The implementation was validated against experimental data of cylindrical samples subjected to compression. Three materials with bone-like microstructure were tested: aluminum foams of variable density (ERG, Oakland, CA, USA), polylactic acid foam (CERM, University of Liège, Liège, Belgium), and cancellous bone tissue of a deer antler (Faculty of Veterinary Medicine, University of Liège, Liège, Belgium).


Archive | 2016

In-Silico Models of Trabecular Bone: A Sensitivity Analysis Perspective

Marlène Mengoni; Sebastien N. F. Sikora; Vinciane D'Otreppe; Ruth K. Wilcox; Alison C. Jones

This chapter provides an overview from a sensitivity analysis perspective of computational mechanical modeling of trabecular bone, where models are generated from Computed Tomography images. Specifically, the effect of model development choices on the model results is systematically reviewed and analyzed for both micro-Finite Element and continuum-Finite Element models. Particular emphasis is placed on the image processing effects (thresholding, down-sampling, image to material properties relationships), the mesh-related aspects (mesh size, element type), and the computational representation of the boundary conditions. Typical issues are highlighted and recommendations are proposed with respect to various model applications, including global stiffness/strength and local failure stress/strain behavior.


Journal of Biomechanics | 2016

Subject-specific multi-validation of a finite element model of ovine cervical functional spinal units

Marlène Mengoni; Ksenija Vasiljeva; Alison C. Jones; Sami M. Tarsuslugil; Ruth K. Wilcox

The complex motion and geometry of the spine in the cervical region makes it difficult to determine how loads are distributed through adjacent vertebrae or between the zygapophysial (facet) joints and the intervertebral disc. Validated finite element modes can give insight on this distribution. The aim of this contribution was to produce direct validation of subject-specific finite element models of Functional Spinal Units (FSU׳s) of the cervical spine and to evaluate the importance of including fibre directionality in the mechanical description of the annulus fibrosus. Eight specimens of cervical FSU׳s were prepared from five ovine spines and mechanically tested in axial compression monitoring overall load and displacements as well as local facet joints pressure and displacement. Subject-specific finite element models were produced from microCT image data reproducing the experimental setup and measuring global axial force and displacement as well as local facet joints displacement and contact forces. Material models and parameters were taken from the literature, testing isotropic and anisotropic materials for the annulus fibrosus. The validated models showed that adding the direction of the fibres to their non-linear behaviour in the description of the annulus fibrosus improves the predictions at large strain values but not at low strain values. The load transferred through the facet joints was always accurate, irrespective of the annulus material model, while the predicted facet displacement was larger than the measured one but not significantly. This is, to the authors׳ knowledge, the first subject-specific direct validation study on a group of specimens, accounting for inter-subject variability.


Medical Engineering & Physics | 2016

Mesh management methods in finite element simulations of orthodontic tooth movement

Marlène Mengoni; Jean-Philippe Ponthot; Romain Boman

In finite element simulations of orthodontic tooth movement, one of the challenges is to represent long term tooth movement. Large deformation of the periodontal ligament and large tooth displacement due to bone remodelling lead to large distortions of the finite element mesh when a Lagrangian formalism is used. We propose in this work to use an Arbitrary Lagrangian Eulerian (ALE) formalism to delay remeshing operations. A large tooth displacement is obtained including effect of remodelling without the need of remeshing steps but keeping a good-quality mesh. Very large deformations in soft tissues such as the periodontal ligament is obtained using a combination of the ALE formalism used continuously and a remeshing algorithm used when needed. This work demonstrates that the ALE formalism is a very efficient way to delay remeshing operations.


International Journal for Numerical Methods in Biomedical Engineering | 2017

Three-dimensional assessment of impingement risk in geometrically parameterised hips compared with clinical measures

Robert J. Cooper; Marlène Mengoni; Dawn Groves; Sophie Williams; Marcus Bankes; Philip Robinson; Alison C. Jones

Abstract Abnormal bony morphology is a factor implicated in hip joint soft tissue damage and an increased lifetime risk of osteoarthritis. Standard 2‐dimensional radiographic measurements for diagnosis of hip deformities, such as cam deformities on the femoral neck, do not capture the full joint geometry and are not indicative of symptomatic damage. In this study, a 3‐dimensional geometric parameterisation system was developed to capture key variations in the femur and acetabulum of subjects with clinically diagnosed cam deformity. The parameterisation was performed for computed tomography scans of 20 patients (10 female and 10 male). Novel quantitative measures of cam deformity were taken and used to assess differences in morphological deformities between males and females. The parametric surfaces matched the more detailed, segmented hip bone geometry with low fitting error. The quantitative severity measures captured both the size and the position of cams and distinguished between cam and control femurs. The precision of the measures was sufficient to identify differences between subjects that could not be seen with the sole use of 2‐dimensional imaging. In particular, cams were found to be more superiorly located in males than in females. As well as providing a means to distinguish between subjects more clearly, the new geometric hip parameterisation facilitates the flexible and rapid generation of a range of realistic hip geometries including cams. When combined with material property models, these stratified cam shapes can be used for further assessment of the effect of the geometric variation under impingement conditions.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2016

Prediction of the mechanical response of canine humerus to three-point bending using subject-specific finite element modelling

Cédric Laurent; Béatrice Böhme; Marlène Mengoni; Vinciane D'Otreppe; Marc Balligand; Jean-Philippe Ponthot

Subject-specific finite element models could improve decision making in canine long-bone fracture repair. However, it preliminary requires that finite element models predicting the mechanical response of canine long bone are proposed and validated. We present here a combined experimental–numerical approach to test the ability of subject-specific finite element models to predict the bending response of seven pairs of canine humeri directly from medical images. Our results show that bending stiffness and yield load are predicted with a mean absolute error of 10.1% (±5.2%) for the 14 samples. This study constitutes a basis for the forthcoming optimization of canine long-bone fracture repair.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Modelling the failure precursor mechanism of lamellar fibrous tissues, example of the annulus fibrosus

Marlène Mengoni; Alison C. Jones; Ruth K. Wilcox

The aims of this study were to assess the damage and failure strengths of lamellar fibrous tissues, such as the anterior annulus fibrosus (AF), and to develop a mathematical model of damage propagation of the lamellae and inter-lamellar connections. This level of modelling is needed to accurately predict the effect of damage and failure induced by trauma or clinical interventions. 26 ovine anterior AF cuboid specimens from 11 lumbar intervertebral discs were tested in radial tension and mechanical parameters defining damage and failure were extracted from the in-vitro data. Equivalent 1D analytical models were developed to represent the specimen strength and the damage propagation, accounting for the specimen dimensions and number of lamellae. Model parameters were calibrated on the in-vitro data. Similar to stiffness values reported for other orientations, the outer annulus was found stronger than the inner annulus in the radial direction, with failure at higher stress values. The inner annulus failed more progressively, showing macroscopic failure at a higher strain value. The 1D analytical model of damage showed that lamellar damage is predominant in the failure mechanism of the AF. The analytical model of the connections between lamellae allowed us to represent separately damage processes in the lamellae and the inter-lamellar connections, which cannot be experimentally tested individually.

Collaboration


Dive into the Marlène Mengoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge