Marlene Meyer
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marlene Meyer.
Experimental Brain Research | 2011
Marlene Meyer; Sabine Hunnius; Michiel van Elk; Freek van Ede; Harold Bekkering
When we are engaged in a joint action, we need to integrate our partner’s actions with our own actions. Previous research has shown that in adults the involvement of one’s own motor system is enhanced during observation of an action partner as compared to during observation of an individual actor. The aim of this study was to investigate whether similar motor system involvement is present at early stages of joint action development and whether it is related to joint action performance. In an EEG experiment with 3-year-old children, we assessed the children’s brain activity and performance during a joint game with an adult experimenter. We used a simple button-pressing game in which the two players acted in turns. Power in the mu- and beta-frequency bands was compared when children were not actively moving but observing the experimenter’s actions when (1) they were engaged in the joint action game and (2) when they were not engaged. Enhanced motor involvement during action observation as indicated by attenuated sensorimotor mu- and beta-power was found when the 3-year-olds were engaged in the joint action. This enhanced motor activation during action observation was associated with better joint action performance. The findings suggest that already in early childhood the motor system is differentially activated during action observation depending on the involvement in a joint action. This motor system involvement might play an important role for children’s joint action performance.
Experimental Brain Research | 2013
Marlene Meyer; Robrecht P. R. D. van der Wel; Sabine Hunnius
Many actions involve multiple action steps, which raises the question how far ahead people plan when they perform such actions. Here, we examined higher-order planning for action sequences and whether people planned similarly or differently when acting individually or together with an action partner. For individual performances, participants picked up an object with one hand and passed it to their other hand before placing it onto a target location. For joint performances, they picked up the object and handed it to their action partner, who placed it onto the target location. Each object could be grasped at only two possible grasping positions, implying that the first selected grasp on the object determined the postures for the rest of the action sequence. By varying the height of the target shelf, we tested whether people planned ahead and modulated their grasp choices to avoid uncomfortable end postures. Our results indicated that participants engaged in higher-order planning, but needed task experience before demonstrating such planning during both individual and joint performances. The rate of learning was similar in the two conditions, and participants transferred experience from individual to joint performance. Our results indicate similarity in mechanisms underlying individual and joint action sequence planning.
Frontiers in Human Neuroscience | 2010
Marlene Meyer; Harold Bekkering; Markus Paulus; Sabine Hunnius
When acting jointly with others, adults can be as proficient as when acting individually. However, how young children coordinate their actions with another person and how their action coordination develops during early childhood is not well understood. By means of a sequential button-pressing game, which could be played jointly or individually, the action coordination of 2½- and 3-year-old children was examined. Performance accuracy and variability of response timing were taken as indicators of coordination ability. Results showed substantial improvement in joint action coordination between the age of 2½ and 3, but both age groups performed equally well when acting individually. Interestingly, 3-year-olds performed equally well in the joint and the individual condition, whereas 2½-year-olds did not yet show this adult-like pattern as indicated by less accurate performance in the joint action. The findings suggest that in contrast to 3-year-olds, 2½-year-olds still have difficulties in establishing well-coordinated joint action with an adult partner. Possible underlying cognitive abilities such as action planning and action control are discussed.
Philosophical Transactions of the Royal Society B | 2016
Marlene Meyer; R.P.R.D. van der Wel; Sabine Hunnius
The planning and adjusting of ones actions in relation to an action partner is fundamental to smooth joint action. During their first years of life, children gradually become more engaged in joint actions. Here, we investigated whether and at what age children take their partner into account in their action plans to accommodate the others actions. We focused on childrens proactive planning (without prior experience) and flexible adjustment of action plans over time. In a behavioural study, we tested 96 children from four age groups (2½, 3, 3½ and 5 years) in a joint cup-stacking task. Children passed cups to their partner who had only one hand available (alternating over time) to build a tower. Childrens response choices were assessed (i.e. passing the cup on the free or occupied side to their partner). The study yielded two major findings. At all ages, children proactively planned their actions in a way that accommodated their partners actions. However, only by 3½ years did children start to flexibly integrate their partner into their action plans. Even at age 5, children only showed minimal adjustments to their action partner. Candidate processes underlying these developmental changes (e.g. inhibitory control, cognitive flexibility, perspective taking) are discussed.
Scientific Reports | 2017
Sarah A. Gerson; Marlene Meyer; Sabine Hunnius; Harold Bekkering
Prior knowledge affects how we perceive the world and the sensorimotor system actively guides our perception. An ongoing dispute regards the extent to which prior motor knowledge versus conceptual knowledge modulates the observation of others’ actions. Research indicates that motor experience increases motor activation during action perception. Other research, however, has shown that conceptual familiarity with actions also modulates motor activation, i.e., increased motor activation during observation of unfamiliar, compared to conceptually familiar, actions. To begin to disentangle motor from conceptual contributions to action perception, we uniquely combined motoric and conceptual interventions into one design. We experimentally manipulated participants’ experience with both motoric skills and conceptual knowledge, via motor training of kinematically challenging actions and contextual information about the action, respectively, in a week-long training session. Measurements of the effects on motor activity measured via electroencephalography (EEG) during pre- and post-training action observation were compared. We found distinct, non-interacting effects of both manipulations: Motor training increased motor activation, whereas additional conceptual knowledge decreased motor activation. The findings indicate that both factors influence action perception in a distinct and parallel manner. This research speaks to previously irreconcilable findings and provides novel insights about the distinct roles of motor and conceptual contributions to action perception.
PLOS ONE | 2017
Claire D. Monroy; Marlene Meyer; Sarah A. Gerson; Sabine Hunnius
Sensitivity to the regularities and structure contained within sequential, goal-directed actions is an important building block for generating expectations about the actions we observe. Until now, research on statistical learning for actions has solely focused on individual action sequences, but many actions in daily life involve multiple actors in various interaction contexts. The current study is the first to investigate the role of statistical learning in tracking regularities between actions performed by different actors, and whether the social context characterizing their interaction influences learning. That is, are observers more likely to track regularities across actors if they are perceived as acting jointly as opposed to in parallel? We tested adults and toddlers to explore whether social context guides statistical learning and—if so—whether it does so from early in development. In a between-subjects eye-tracking experiment, participants were primed with a social context cue between two actors who either shared a goal of playing together (‘Joint’ condition) or stated the intention to act alone (‘Parallel’ condition). In subsequent videos, the actors performed sequential actions in which, for certain action pairs, the first actor’s action reliably predicted the second actor’s action. We analyzed predictive eye movements to upcoming actions as a measure of learning, and found that both adults and toddlers learned the statistical regularities across actors when their actions caused an effect. Further, adults with high statistical learning performance were sensitive to social context: those who observed actors with a shared goal were more likely to correctly predict upcoming actions. In contrast, there was no effect of social context in the toddler group, regardless of learning performance. These findings shed light on how adults and toddlers perceive statistical regularities across actors depending on the nature of the observed social situation and the resulting effects.
Developmental Cognitive Neuroscience | 2017
Hinke M. Endedijk; Marlene Meyer; Harold Bekkering; Antonius H. N. Cillessen; Sabine Hunnius
Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other’s actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children’s interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction.
Cognition | 2016
Janny C. Stapel; Sabine Hunnius; Marlene Meyer; Harold Bekkering
British Journal of Development Psychology | 2016
Marlene Meyer; Ricarda Braukmann; Janny C. Stapel; Harold Bekkering; Sabine Hunnius
Journal of Experimental Child Psychology | 2015
Marlene Meyer; Harold Bekkering; R. Haartsen; Janny C. Stapel; Sabine Hunnius