Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marne C. Hagemeijer is active.

Publication


Featured researches published by Marne C. Hagemeijer.


Journal of Virology | 2008

Topology and Membrane Anchoring of the Coronavirus Replication Complex: Not All Hydrophobic Domains of nsp3 and nsp6 Are Membrane Spanning

Monique Oostra; Marne C. Hagemeijer; Michiel van Gent; Cornelis P. J. Bekker; Eddie G. te Lintelo; Peter J. M. Rottier; Cornelis A. M. de Haan

ABSTRACT Coronaviruses express two very large replicase polyproteins, the 16 autoproteolytic cleavage products of which collectively form the membrane-anchored replication complexes. How these structures are assembled is still largely unknown, but it is likely that the membrane-spanning members of these nonstructural proteins (nsps) are responsible for the induction of the double-membrane vesicles and for anchoring the replication complexes to these membranes. For 3 of the 16 coronavirus nsps—nsp3, nsp4, and nsp6—multiple transmembrane domains are predicted. Previously we showed that, consistent with predictions, nsp4 occurs in membranes with both of its termini exposed in the cytoplasm (M. Oostra et al., J. Virol. 81:12323-12336, 2007). Strikingly, however, for both nsp3 and nsp6, predictions based on a multiple alignment of 27 coronavirus genome sequences indicate an uneven number of transmembrane domains. As a consequence, the proteinase domains present in nsp3 and nsp5 would be separated from their target sequences by the lipid bilayer. To look into this incongruity, we studied the membrane disposition of nsp3 and nsp6 of the severe acute respiratory syndrome coronavirus and murine hepatitis virus by analyzing tagged forms of the proteins expressed in cultured cells. Contrary to the predictions, in both viruses, both proteins had their amino terminus, as well as their carboxy terminus, exposed in the cytoplasm. We established that two of the three hydrophobic domains in nsp3 and six of the seven in nsp6 are membrane spanning. Subsequently, we verified that in nsp4, all four hydrophobic domains span the lipid bilayer. The occurrence of conserved non-membrane-spanning hydrophobic domains in nsp3 and nsp6 suggests an important function for these domains in coronavirus replication.


Journal of Virology | 2012

Visualizing Coronavirus RNA Synthesis in Time by Using Click Chemistry

Marne C. Hagemeijer; Annelotte Vonk; Iryna Monastyrska; Peter J. M. Rottier; C. A. M. de Haan

ABSTRACT Coronaviruses induce in infected cells the formation of replicative structures, consisting of double-membrane vesicles (DMVs) and convoluted membranes, where viral RNA synthesis supposedly takes place and to which the nonstructural proteins (nsps) localize. Double-stranded RNA (dsRNA), the presumed intermediate in RNA synthesis, is localized to the DMV interior. However, as pores connecting the DMV interior with the cytoplasm have not been detected, it is unclear whether RNA synthesis occurs at these same sites. Here, we studied coronavirus RNA synthesis by feeding cells with a uridine analogue, after which nascent RNAs were detected using click chemistry. Early in infection, nascent viral RNA and nsps colocalized with or occurred adjacent to dsRNA foci. Late in infection, the correlation between dsRNA dots, then found dispersed throughout the cytoplasm, and nsps and nascent RNAs was less obvious. However, foci of nascent RNAs were always found to colocalize with the nsp12-encoded RNA-dependent RNA polymerase. These results demonstrate the feasibility of detecting viral RNA synthesis by using click chemistry and indicate that dsRNA dots do not necessarily correspond with sites of active viral RNA synthesis. Rather, late in infection many DMVs may harbor dsRNA molecules that are no longer functioning as intermediates in RNA synthesis.


Journal of Virology | 2010

Dynamics of Coronavirus Replication-Transcription Complexes

Marne C. Hagemeijer; Monique H. Verheije; Mustafa Ulasli; Indra A. Shaltiel; Lisa A. de Vries; Fulvio Reggiori; Peter J. M. Rottier; Cornelis A. M. de Haan

ABSTRACT Coronaviruses induce in infected cells the formation of double-membrane vesicles (DMVs) in which the replication-transcription complexes (RTCs) are anchored. To study the dynamics of these coronavirus replicative structures, we generated recombinant murine hepatitis coronaviruses that express tagged versions of the nonstructural protein nsp2. We demonstrated by using immunofluorescence assays and electron microscopy that this protein is recruited to the DMV-anchored RTCs, for which its C terminus is essential. Live-cell imaging of infected cells demonstrated that small nsp2-positive structures move through the cytoplasm in a microtubule-dependent manner. In contrast, large fluorescent structures are rather immobile. Microtubule-mediated transport of DMVs, however, is not required for efficient replication. Biochemical analyses indicated that the nsp2 protein is associated with the cytoplasmic side of the DMVs. Yet, no recovery of fluorescence was observed when (part of) the nsp2-positive foci were bleached. This result was confirmed by the observation that preexisting RTCs did not exchange fluorescence after fusion of cells expressing either a green or a red fluorescent nsp2. Apparently, nsp2, once recruited to the RTCs, is not exchanged with nsp2 present in the cytoplasm or at other DMVs. Our data show a remarkable resemblance to results obtained recently by others with hepatitis C virus. The observations point to intriguing and as yet unrecognized similarities between the RTC dynamics of different plus-strand RNA viruses.


Journal of Virology | 2010

The Coronavirus Nucleocapsid Protein Is Dynamically Associated with the Replication-Transcription Complexes

Monique H. Verheije; Marne C. Hagemeijer; Mustafa Ulasli; Fulvio Reggiori; Peter J. M. Rottier; Paul S. Masters; Cornelis A. M. de Haan

ABSTRACT The coronavirus nucleocapsid (N) protein is a virion structural protein. It also functions, however, in an unknown way in viral replication and localizes to the viral replication-transcription complexes (RTCs). Here we investigated, using recombinant murine coronaviruses expressing green fluorescent protein (GFP)-tagged versions of the N protein, the dynamics of its interactions with the RTCs and the domain(s) involved. Using fluorescent recovery after photobleaching, we showed that the N protein, unlike the nonstructural protein 2, is dynamically associated with the RTCs. Recruitment of the N protein to the RTCs requires the C-terminal N2b domain, which interacts with other N proteins in an RNA-independent manner.


Journal of Virology | 2011

Mobility and interactions of coronavirus nonstructural protein 4

Marne C. Hagemeijer; Mustafa Ulasli; Annelotte Vonk; Fulvio Reggiori; Peter J. M. Rottier; Cornelis A. M. de Haan

ABSTRACT Green fluorescent protein (GFP)-tagged mouse hepatitis coronavirus nonstructural protein 4 (nsp4) was shown to localize to the endoplasmic reticulum (ER) and to be recruited to the coronavirus replicative structures. Fluorescence loss in photobleaching and fluorescence recovery after photobleaching experiments demonstrated that while the membranes of the ER are continuous with those harboring the replicative structures, the mobility of nsp4 at the latter structures is relatively restricted. In agreement with that observation, nsp4 was shown to be engaged in homotypic and heterotypic interactions, the latter with nsp3 and nsp6. In addition, the coexpression of nsp4 with nsp3 affected the subcellular localization of the two proteins.


Viruses | 2012

Biogenesis and Dynamics of the Coronavirus Replicative Structures

Marne C. Hagemeijer; Peter J. M. Rottier; Cornelis A. M. de Haan

Coronaviruses are positive-strand RNA viruses that are important infectious agents of both animals and humans. A common feature among positive-strand RNA viruses is their assembly of replication-transcription complexes in association with cytoplasmic membranes. Upon infection, coronaviruses extensively rearrange cellular membranes into organelle-like replicative structures that consist of double-membrane vesicles and convoluted membranes to which the nonstructural proteins involved in RNA synthesis localize. Double-stranded RNA, presumably functioning as replicative intermediate during viral RNA synthesis, has been detected at the double-membrane vesicle interior. Recent studies have provided new insights into the assembly and functioning of the coronavirus replicative structures. This review will summarize the current knowledge on the biogenesis of the replicative structures, the membrane anchoring of the replication-transcription complexes, and the location of viral RNA synthesis, with particular focus on the dynamics of the coronavirus replicative structures and individual replication-associated proteins.


Virology | 2014

Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4.

Marne C. Hagemeijer; Iryna Monastyrska; Janice Griffith; Peter van der Sluijs; Jarno Voortman; Paul M.P. van Bergen en Henegouwen; Annelotte Vonk; Peter J. M. Rottier; Fulvio Reggiori; Cornelis A. M. de Haan

Abstract Coronaviruses replicate their genomes in association with rearranged cellular membranes. The coronavirus nonstructural integral membrane proteins (nsps) 3, 4 and 6, are key players in the formation of the rearranged membranes. Previously, we demonstrated that nsp3 and nsp4 interact and that their co-expression results in the relocalization of these proteins from the endoplasmic reticulum (ER) into discrete perinuclear foci. We now show that these foci correspond to areas of rearranged ER-derived membranes, which display increased membrane curvature. These structures, which were able to recruit other nsps, were only detected when nsp3 and nsp4 were derived from the same coronavirus species. We propose, based on the analysis of a large number of nsp3 and nsp4 mutants, that interaction between the large luminal loops of these proteins drives the formation of membrane rearrangements, onto which the coronavirus replication–transcription complexes assemble in infected cells.


Journal of Cystic Fibrosis | 2017

Translational research to enable personalized treatment of cystic fibrosis

Marne C. Hagemeijer; Daniel J. Siegwart; Lisa J. Strug; Liudmila Cebotaru; Michael J. Torres; Aderonke Sofoluwe; Jeffrey M. Beekman

Translational research efforts in cystic fibrosis (CF) aim to develop therapies for all subjects with CF. To reach this goal new therapies need to be developed that target multiple aspects of the disease. To enable individuals to benefit maximally from these treatments will require improved methods to tailor these therapies specifically to individuals who suffer from CF. This report highlights current examples of translational CF research efforts to reach this goal. The use of intestinal organoids and genetics to better understand individual assessment of CFTR modulator treatment effects to ultimately enable a better personalized treatment for CF subjects will be discussed. In addition, development of viral vectors and non-viral synthetic nanoparticles for delivery of mRNA, sgRNA and DNA will be highlighted. New approaches to restore function of CFTR with early premature termination codons using nanoparticle delivery of suppressor tRNAs and new insights into mechanisms of airway epithelial repair will be reviewed as well. The state-of-the-art approaches that are discussed in this review demonstrate significant progress towards the development of optimal individual therapies for CF patients, but also reveal that remaining challenges still lie ahead.


Journal of Cystic Fibrosis | 2018

Comparison of ex vivo and in vitro intestinal cystic fibrosis models to measure CFTR-dependent ion channel activity

Domenique D. Zomer-van Ommen; Eyleen de Poel; Evelien Kruisselbrink; Hugo Oppelaar; Annelotte Vonk; Hettie M. Janssens; Cornelis K. van der Ent; Marne C. Hagemeijer; Jeffrey M. Beekman

BACKGROUND New functional assays using primary human intestinal adult stem cell cultures can be valuable tools to study epithelial defects in human diseases such as cystic fibrosis. METHODS CFTR-mediated ion transport was measured in rectal organoid-derived monolayers grown from subjects with various CFTR mutations and compared to donor-matched intestinal current measurements (ICM) in rectal biopsies and forskolin-induced swelling of rectal organoids. RESULTS Rectal organoid-derived monolayers were generated within four days. Ion transport measurements of CFTR function using these monolayers correlated with ICM and organoid swelling (r = 0.73 and 0.79 respectively). Culturing the monolayers under differentiation conditions enhanced the detection of mucus-secreting cells and was accompanied by reduced CFTR function. CONCLUSIONS CFTR-dependent intestinal epithelial ion transport properties can be measured in rectal organoid-derived monolayers of subjects and correlate with donor-matched ICM and rectal organoid swelling.


Methods of Molecular Biology | 2015

Studying the dynamics of coronavirus replicative structures.

Marne C. Hagemeijer; Cornelis A. M. de Haan

Coronaviruses (CoVs) generate specialized membrane compartments, which consist of double membrane vesicles connected to convoluted membranes, the so-called replicative structures, where viral RNA synthesis takes place. These sites harbor the CoV replication–transcription complexes (RTCs): multi-protein complexes consisting of 16 nonstructural proteins (nsps), the CoV nucleocapsid protein (N) and presumably host proteins. To successfully establish functional membrane-bound RTCs all of the viral and host constituents need to be correctly spatiotemporally organized during viral infection. Few studies, however, have investigated the dynamic processes involved in the formation and functioning of the (subunits of) CoV RTCs and the replicative structures in living cells. In this chapter we describe several protocols to perform time-lapse imaging of CoV-infected cells and to study the kinetics of (subunits of) the CoV replicative structures. The approaches described are not limited to CoV-infected cells; they can also be applied to other virus-infected or non-infected cells.

Collaboration


Dive into the Marne C. Hagemeijer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fulvio Reggiori

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge