Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maroun Bou Khalil is active.

Publication


Featured researches published by Maroun Bou Khalil.


Mass Spectrometry Reviews | 2010

Lipidomics era: Accomplishments and challenges

Maroun Bou Khalil; Weimin Hou; Hu Zhou; Fred Elisma; Leigh Anne Swayne; Alexandre P. Blanchard; Zemin Yao; Steffany A. L. Bennett; Daniel Figeys

Lipid mediators participate in signal transduction pathways, proliferation, apoptosis, and membrane trafficking in the cell. Lipids are highly complex and diverse owing to the various combinations of polar headgroups, fatty acyl chains, and backbone structures. This structural diversity continues to pose a challenge for lipid analysis. Here we review the current state of the art in lipidomics research and discuss the challenges facing this field. The latest technological developments in mass spectrometry, the role of bioinformatics, and the applications of lipidomics in lipid metabolism and cellular physiology and pathology are also discussed.


Journal of Lipid Research | 2010

Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions

Meenakshi Sundaram; Shumei Zhong; Maroun Bou Khalil; Philip H. Links; Yang Zhao; Jahangir Iqbal; M. Mahmood Hussain; Robin J. Parks; Yuwei Wang; Zemin Yao

Apolipoprotein (apo) C-III plays a regulatory role in VLDL lipolysis and clearance. In this study, we determined a potential intracellular role of apoC-III in hepatic VLDL assembly and secretion. Stable expression of recombinant apoC-III in McA-RH7777 cells resulted in increased secretion efficiency of VLDL-associated triacylglycerol (TAG) and apoB-100 in a gene-dosage-dependent manner. The stimulatory effect of apoC-III on TAG secretion was manifested only when cells were cultured under lipid-rich (i.e., media supplemented with exogenous oleate) but not lipid-poor conditions. The stimulated TAG secretion was accompanied by increased secretion of apoB-100 and apoB-48 as VLDL1. Expression of apoC-III also increased mRNA and activity of microsomal triglyceride transfer protein (MTP). Pulse-chase experiments showed that apoC-III expression promoted VLDL1 secretion even under conditions where the MTP activity was inhibited immediately after the formation of lipid-poor apoB-100 particles, suggesting an involvement of apoC-III in the second-step VLDL assembly process. Consistent with this notion, the newly synthesized apoC-III was predominantly associated with TAG within the microsomal lumen that resembled lipid precursors of VLDL. Introducing an Ala23-to-Thr mutation into apoC-III, a naturally occurring mutation originally identified in two Mayan Indian subjects with hypotriglyceridemia, abolished the ability of apoC-III to stimulate VLDL secretion from transfected cells. Thus, expression of apoC-III in McA-RH7777 cells enhances hepatic TAG-rich VLDL assembly and secretion under lipid-rich conditions.


Journal of Lipid Research | 2010

Functional analysis of the missense APOC3 mutation Ala23Thr associated with human hypotriglyceridemia

Meenakshi Sundaram; Shumei Zhong; Maroun Bou Khalil; Hu Zhou; Zhenghui G. Jiang; Yang Zhao; Jahangir Iqbal; M. Mahmood Hussain; Daniel Figeys; Yuwei Wang; Zemin Yao

We have shown that expression of apolipoprotein (apo) C-III promotes VLDL secretion from transfected McA-RH7777 cells under lipid-rich conditions. To determine structural elements within apoC-III that confer to this function, we contrasted wild-type apoC-III with a mutant Ala23Thr originally identified in hypotriglyceridemia subjects. Although synthesis of [3H]glycerol-labeled TAG was comparable between cells expressing wild-type apoC-III (C3wt cells) or Ala23Thr mutant (C3AT cells), secretion of [3H]TAG from C3AT cells was markedly decreased. The lowered [3H]TAG secretion was associated with an inability of C3AT cells to assemble VLDL1. Moreover, [3H]TAG within the microsomal lumen in C3AT cells was 60% higher than that in C3wt cells, yet the activity of microsomal triglyceride-transfer protein in C3AT cells was not elevated. The accumulated [3H]TAG in C3AT microsomal lumen was mainly associated with lumenal IDL/LDL-like lipoproteins. Phenotypically, this [3H]TAG fractionation profiling resembled what was observed in cells treated with brefeldin A, which at low dose specifically blocked the second-step VLDL1 maturation. Furthermore, lumenal [35S]Ala23Thr protein accumulated in IDL/LDL fractions and was absent in VLDL fractions in C3AT cells. These results suggest that the presence of Ala23Thr protein in lumenal IDL/LDL particles might prevent effective fusion between lipid droplets and VLDL precursors. Thus, the current study reveals an important structural element residing within the N-terminal region of apoC-III that governs the second step VLDL1 maturation.


Biochimica et Biophysica Acta | 2010

Lipin — The bridge between hepatic glycerolipid biosynthesis and lipoprotein metabolism

Maroun Bou Khalil; Alexandre Blais; Daniel Figeys; Zemin Yao

Growing evidence links the three mammalian lipin proteins, i.e., lipin-1, lipin-2 and lipin-3, to metabolic and cardiovascular diseases such as noninsulin-dependent diabetes mellitus and atherosclerosis. Lipin proteins play a dual function in lipid metabolism by acting as phosphatidate phosphatase (PAP) enzymes and as transcriptional regulators. Genetic variants within the human LPIN1 and LPIN2 genes are associated with metabolic syndromes. The fatty liver dystrophy (fld) mice carrying mutations within the Lpin1 gene display life-long deficiency in adipogenesis, insulin resistance, neonatal hepatosteatosis and hypertriglyceridemia, as well as increased atherosclerosis susceptibility. Cell culture studies show that hepatic lipin-1 expression is selectively stimulated by glucocorticoids and repressed by insulin, and its subcellular localization governs the assembly and secretion of very low density lipoproteins (VLDL). In noninsulin-dependent diabetes, glucocorticoid signals lead to dyslipidemia characterized by overproduction of VLDL and atherogenic remnants. This puts lipin-1 as a key integrator of hormonal signals to the liver in diabetic dyslipidemia. This review summarizes the current understanding of the role that hepatic lipin-1 plays in the synthesis, storage and compartmentalization of glycerolipids, and highlights the lipid metabolic consequences associated with dysregulated lipin expression.


Biology of Reproduction | 2005

Percoll Gradient-Centrifuged Capacitated Mouse Sperm Have Increased Fertilizing Ability and Higher Contents of Sulfogalactosylglycerolipid and Docosahexaenoic Acid-Containing Phosphatidylcholine Compared to Washed Capacitated Mouse Sperm

Anna Furimsky; Ngoc Q. Vuong; Hongbin Xu; Premkumari Kumarathasan; Min Xu; Wattana Weerachatyanukul; Maroun Bou Khalil; M. Kates; Nongnuj Tanphaichitr

Abstract Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.


Rapid Communications in Mass Spectrometry | 2011

Lyso‐form fragment ions facilitate the determination of stereospecificity of diacyl glycerophospholipids

Weimin Hou; Hu Zhou; Maroun Bou Khalil; Deeptee Seebun; Steffany A. L. Bennett; Daniel Figeys

In this work we report the development of a novel methodology for the determination of stereospecificity of diacyl glycerophospholipids, including glycerophosphatidic acids (PA), glycerophosphoserines (PS), glycerophosphoglycerols (PG), glycerophosphoinositols (PI), and glycerophosphoethanolamines (PE), which can be conventionally ionized in negative ion mode. This methodology uses MS(2) recorded on a hybrid quadrupole time-of-flight mass spectrometer to determine the stereospecificity of diacyl glycerophospholipids based on the lyso-form fragment ions, attributed to the neutral loss of fatty acyl moieties. The fragmentation patterns of a variety of diacyl glycerophospholipid standards were first fully examined over a wide range of collision energy. We observed that lyso-form fragment ions corresponding to the neutral loss of fatty acyl moieties attached to the sn2 position as free fatty acids ([M-Sn2](-) ) and as ketenes ([M-(Sn2-H(2) O)](-) ) exhibited consistently higher intensity than their counterpart ions due to the neutral loss of fatty acyl moieties attached to the sn1 position ([M-Sn1](-) and [M-(Sn1-H(2) O)](-) ). Therefore, we concluded that an empirical fragmentation rule can be used to precisely determine the stereospecificity of diacyl glycerophospholipids, primarily on the basis of relative abundance of the lyso-form fragment ions. We then examined the product ion spectra of diacyl glycerophospholipids recorded from lipid extracts of rat hepatoma cells, where the stereospecific information of these lipids was conclusively determined. Combining the novel methodology reported in this work with the currently widely practiced mass spectrometric techniques such as multiple precursor ion scans (MPIS), fatty acyl scans (FAS), and multidimensional mass spectrometry based shotgun lipidomics (MDMS-SL), should enable a reliable and convenient platform for comprehensive glycerophospholipid profiling.


Chemistry and Physics of Lipids | 2000

A Fourier-transform infrared study of the interaction between germ-cell specific sulfogalactosylglycerolipid and dimyristoylglycerophosphocholine

Mayssa Attar; M. Kates; Maroun Bou Khalil; Danielle Carrier; P. T. T. Wong; Nongnuj Tanphaichitr

In this study, we investigated structural and dynamic changes of sulfogalactosylglycerolipid (SGG) and dimyristoylglycerophosphocholine (DMPC) in a liposomal system (SGG+DMPC, molar ratio 2:3) by Fourier-transform infrared (FTIR) spectroscopy. Cooling of the preheated SGG liposomes (5-65 degrees C) revealed that the liquid crystalline-to-gel phase transition was centered at 45 degrees C. SGG+DMPC liposomes showed a single phase transition at 28 degrees C. Spectral changes of the ester C&z. dbnd6;O groups of SGG and DMPC in the mixed liposomes indicated a decrease in their interfacial hydrogen bonding intermolecularly and with water. Analysis of SGGs symmetric and antisymmetric CH(2) stretching bands revealed that the insertion of DMPC into SGG bilayers increased the number of gauche conformers in SGGs hydrocarbon chains. Overall, the SGG+DMPC liposomes were homogeneous, with reduced interfacial hydrogen bonding and increased orientational and conformational disorder of SGGs hydrocarbon chains.


PLOS ONE | 2013

Mitochondrial Hyperfusion during Oxidative Stress Is Coupled to a Dysregulation in Calcium Handling within a C2C12 Cell Model

Calum J. Redpath; Maroun Bou Khalil; Gregory Drozdzal; Milica Radisic; Heidi M. McBride

Atrial Fibrillation is the most common sustained cardiac arrhythmia worldwide harming millions of people every year. Atrial Fibrillation (AF) abruptly induces rapid conduction between atrial myocytes which is associated with oxidative stress and abnormal calcium handling. Unfortunately this new equilibrium promotes perpetuation of the arrhythmia. Recently, in addition to being the major source of oxidative stress within cells, mitochondria have been observed to fuse, forming mitochondrial networks and attach to intracellular calcium stores in response to cellular stress. We sought to identify a potential role for rapid stimulation, oxidative stress and mitochondrial hyperfusion in acute changes to myocyte calcium handling. In addition we hoped to link altered calcium handling to increased sarcoplasmic reticulum (SR)-mitochondrial contacts, the so-called mitochondrial associated membrane (MAM). We selected the C2C12 murine myotube model as it has previously been successfully used to investigate mitochondrial dynamics and has a myofibrillar system similar to atrial myocytes. We observed that rapid stimulation of C2C12 cells resulted in mitochondrial hyperfusion and increased mitochondrial colocalisation with calcium stores. Inhibition of mitochondrial fission by transfection of mutant DRP1K38E resulted in similar effects on mitochondrial fusion, SR colocalisation and altered calcium handling. Interestingly the effects of ‘forced fusion’ were reversed by co-incubation with the reducing agent N-Acetyl cysteine (NAC). Subsequently we demonstrated that oxidative stress resulted in similar reversible increases in mitochondrial fusion, SR-colocalisation and altered calcium handling. Finally, we believe we have identified that myocyte calcium handling is reliant on baseline levels of reactive oxygen species as co-incubation with NAC both reversed and retarded myocyte response to caffeine induced calcium release and re-uptake. Based on these results we conclude that the coordinate regulation of mitochondrial fusion and MAM contacts may form a point source for stress-induced arrhythmogenesis. We believe that the MAM merits further investigation as a therapeutic target in AF-induced remodelling.


Biochimica et Biophysica Acta | 2001

Polymorphic phases of galactocerebrosides: spectroscopic evidence of lamellar crystalline structures

Maroun Bou Khalil; Danielle Carrier; P. T. T. Wong; Nongnuj Tanphaichitr

Fourier transform infrared spectroscopy was applied to study the structural and thermal properties of bovine brain galactocerebroside (GalCer) containing amide linked non-hydroxylated or alpha-hydroxy fatty acids (NFA- and HFA-GalCer, respectively). Over the temperature range 0-90 degrees C, both GalCer displayed complex thermal transitions, characteristic of polymorphic phase behavior. Upon heating, aqueous dispersions of NFA- and HFA-GalCer exhibited high order-disorder transition temperatures near 80 and 72 degrees C, respectively. En route to the chain melting transition, the patterns of the amide I band of NFA-GalCer were indicative of two different lamellar crystalline phases, whereas those of HFA-GalCer were suggestive of lamellar gel and crystalline bilayers. Cooling from the liquid-crystalline phase resulted in the formation of another crystalline phase of NFA-GalCer and a gel phase of HFA-GalCer, with a phase transition near 62 and 66 degrees C, respectively. Prolonged incubation of GalCer bilayers at 38 degrees C revealed conversions among lamellar crystalline phases (NFA-GalCer) or between lamellar gel and crystalline bilayer structures (HFA-GalCer). Spectral changes indicated that the temperature and/or time induced formation of the lamellar crystalline structures of NFA- and HFA-GalCer was accompanied by partial dehydration and by rearrangements of the hydrogen bonding network and bilayer packing mode of GalCer.


Journal of Lipid Research | 2009

The level and compartmentalization of phosphatidate phosphatase-1 (lipin-1) control the assembly and secretion of hepatic VLDL

Maroun Bou Khalil; Meenakshi Sundaram; Hongyu Zhang; Philip H. Links; Jennifer F. Raven; Boripont Manmontri; Meltem Sariahmetoglu; Khai Tran; Karen Reue; David N. Brindley; Zemin Yao

Collaboration


Dive into the Maroun Bou Khalil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nongnuj Tanphaichitr

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Zhao

Canadian Institutes of Health Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hu Zhou

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge