Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mart C.M. de Jong is active.

Publication


Featured researches published by Mart C.M. de Jong.


The Journal of Infectious Diseases | 2004

Avian Influenza A Virus (H7N7) Epidemic in The Netherlands in 2003: Course of the Epidemic and Effectiveness of Control Measures

Arjan Stegeman; A. Bouma; A.R.W. Elbers; Mart C.M. de Jong; G. Nodelijk; Fred de Klerk; G. Koch; Michiel van Boven

An epidemic of high-pathogenicity avian influenza (HPAI) A virus subtype H7N7 occurred in The Netherlands in 2003 that affected 255 flocks and led to the culling of 30 million birds. To evaluate the effectiveness of the control measures, we quantified between-flock transmission characteristics of the virus in 2 affected areas, using the reproduction ratio Rh. The control measures markedly reduced the transmission of HPAI virus: Rh before detection of the outbreak in the first infected flock was 6.5 (95% confidence interval [CI], 3.1-9.9) in one area and 3.1 in another area, and it decreased to 1.2 (95% CI, 0.6-1.9) after detection of the first outbreak in both areas. The observation that Rh remained >1 suggests that the containment of the epidemic was probably due to the reduction in the number of susceptible flocks by complete depopulation of the infected areas rather than to the reduction of the transmission by the other control measures.


Vaccine | 1994

Experimental quantification of vaccine-induced reduction in virus transmission

Mart C.M. de Jong; Tjeerd G. Kimman

Although reduction in transmission of an agent in the host population is an important goal of many vaccinations, suitable experimental methods to measure transmission have been lacking. Therefore, we designed and tested an animal experiment to quantify transmission among vaccinated and unvaccinated animals. We used Aujeszkys disease virus (ADV) in pigs, because a serological test was available to detect infection in vaccinated pigs and because vaccination against ADV will be used in an attempt to eliminate ADV from the Netherlands. Our experiments showed that vaccinating twice with vaccine 783 significantly reduces ADV transmission. In unvaccinated groups, the estimated maximum number of secondary cases per infectious individual, i.e. the basic reproduction ratio R0, was 10.0. In contrast, the reproduction ratio for the vaccinated groups R, i.e. the average number of secondary cases per infectious individual in a totally vaccinated population, was 0.5. These results show that it is possible to measure transmission experimentally. Therefore, such measurements should be obtained for all vaccines that are intended to eliminate agents causing animal diseases, either on a single farm or in a whole country.


PLOS Computational Biology | 2005

Risk Maps for the Spread of Highly Pathogenic Avian Influenza in Poultry

Gert Jan Boender; T.H.J. Hagenaars; A. Bouma; G. Nodelijk; A.R.W. Elbers; Mart C.M. de Jong; Michiel van Boven

Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms.


Preventive Veterinary Medicine | 1995

Mathematical modelling in veterinary epidemiology: why model building is important

Mart C.M. de Jong

Some consider modelling to be very important for (veterinary) epidemiology, others severely criticise the use of modelling. Before joining this heated debate it is worthwhile to reflect on the role of mathematical modelling. Mathematical modelling is useful for the study of complex phenomena, like the population dynamics of infectious agents, because models show how separate measurements can be seen as manifestation of the same underlying processes. To build models that can act as connecting theories, careful model building is very important. It is shown how modelling helped to understand how transmission depends on underlying factors. Through a process of careful model building and comparisons of different model assumptions and model predictions with data one hypothesis was falsified and therewith the plausibility of another strengthened. In conclusion, the gain of the modelling was not the resulting model, but instead the insight into the population dynamics of infectious agents that was obtained in the process of model building and model analysis on the one hand, and interpreting experimental and observational data on the other.


BMC Veterinary Research | 2009

The course of hepatitis E virus infection in pigs after contact-infection and intravenous inoculation.

Martijn Bouwknegt; Saskia A. Rutjes; Chantal Reusken; Norbert Stockhofe-Zurwieden; K. Frankena; Mart C.M. de Jong; Ana Maria de Roda Husman; Wim H. M. van der Poel

BackgroundWorldwide, hepatitis E virus (HEV) genotype 3 is observed in pigs and transmission to humans is implied. To be able to estimate public health risks from e.g. contact with pigs or consumption of pork products, the transmission routes and dynamics of infection should be identified. Hence, the course of HEV-infection in naturally infected pigs should be studied.ResultsTo resemble natural transmission, 24 HEV-susceptible pigs were infected either by one-to-one exposure to intravenously inoculated pigs (C1-pigs; n = 10), by one-to-one exposure to contact-infected pigs (C2-pigs: n = 7; C3-pigs: n = 5) or due to an unknown non-intravenous infection route (one C2-pig and one C3-pig). The course of HEV-infection for contact-infected pigs was characterized by: faecal HEV RNA excretion that started at day 7 (95% confidence interval: 5–10) postexposure and lasted 23 (19–28) days; viremia that started after 13 (8–17) days of faecal HEV RNA excretion and lasted 11 (8–13) days; antibody development that was detected after 13 (10–16) days of faecal HEV RNA excretion. The time until onset of faecal HEV RNA excretion and onset of viremia was significantly shorter for iv-pigs compared to contact-infected pigs, whereas the duration of faecal HEV RNA excretion was significantly longer. At 28 days postinfection HEV RNA was detected less frequently in organs of contact-infected pigs compared to iv-pigs. For contact-infected pigs, HEV RNA was detected in 20 of 39 muscle samples that were proxies for pork at retail and in 4 of 7 urine samples.ConclusionThe course of infection differed between infection routes, suggesting that contact-infection could be a better model for natural transmission than iv inoculation. Urine and meat were identified as possible HEV-sources for pig-to-pig and pig-to-human HEV transmission.


Virology | 2008

Transmission of highly pathogenic avian influenza H5N1 virus in Pekin ducks is significantly reduced by a genetically distant H5N2 vaccine

Jeanet A. van der Goot; Michiel van Boven; Arjan Stegeman; Sandra G. P. van de Water; Mart C.M. de Jong; G. Koch

Domestic ducks play an important role in the epidemiology of H5N1 avian influenza. Although it is known that vaccines that have a high homology with the challenge virus are able to prevent infection in ducks, little is yet known about the ability of genetically more distant vaccines in preventing infection, disease, and transmission. Here we study the effect of a widely used H5N2 vaccine (A/Chicken/Mexico/232/94/CPA) on the transmission of H5N1 virus (A/Chicken/China/1204/04) in ducks. The quantitative analyses show that despite the low level of homology between the virus and vaccine strain transmission was significantly reduced two weeks after a single or double vaccination. Mortality and disease rates were reduced markedly already one week after a single vaccination.


Environmental Science & Technology | 2015

Role of the Environment in the Transmission of Antimicrobial Resistance to Humans : A Review

P.M.C. Huijbers; Hetty Blaak; Mart C.M. de Jong; E.A.M. Graat; Christina M. J. E. Vandenbroucke-Grauls; Ana Maria de Roda Husman

To establish a possible role for the natural environment in the transmission of clinically relevant AMR bacteria to humans, a literature review was conducted to systematically collect and categorize evidence for human exposure to extended-spectrum β-lactamase-producing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus spp. in the environment. In total, 239 datasets adhered to inclusion criteria. AMR bacteria were detected at exposure-relevant sites (35/38), including recreational areas, drinking water, ambient air, and shellfish, and in fresh produce (8/16). More datasets were available for environmental compartments (139/157), including wildlife, water, soil, and air/dust. Quantitative data from exposure-relevant sites (6/35) and environmental compartments (11/139) were scarce. AMR bacteria were detected in the contamination sources (66/66) wastewater and manure, and molecular data supporting their transmission from wastewater to the environment (1/66) were found. The abundance of AMR bacteria at exposure-relevant sites suggests risk for human exposure. Of publications pertaining to both environmental and human isolates, however, only one compared isolates from samples that had a clear spatial and temporal relationship, and no direct evidence was found for transmission to humans through the environment. To what extent the environment, compared to the clinical and veterinary domains, contributes to human exposure needs to be quantified. AMR bacteria in the environment, including sites relevant for human exposure, originate from contamination sources. Intervention strategies targeted at these sources could therefore limit emission of AMR bacteria to the environment.


Veterinary Research | 2008

Estimation of hepatitis E virus transmission among pigs due to contact-exposure.

Martijn Bouwknegt; K. Frankena; Saskia A. Rutjes; Gerard J. Wellenberg; Ana Maria de Roda Husman; Wim H. M. van der Poel; Mart C.M. de Jong

Locally acquired hepatitis E in humans from industrialized countries has been repeatedly suggested to originate from pigs. Pigs may serve as a reservoir of hepatitis E virus (HEV) for humans when a typical infected pig causes on average more than one newly infected pig, a property that is expressed by the basic reproduction ratio R(0). In this study, R(0) for HEV transmission among pigs was estimated from chains of one-to-one transmission experiments in two blocks of five chains each. Per chain, susceptible first-generation contact pigs were contact-exposed to intravenously inoculated pigs, subsequently susceptible second-generation contact pigs were contact-exposed to infected first-generation contact pigs, and lastly, susceptible third-generation contact pigs were contact-exposed to infected second-generation contact pigs. Thus, in the second and third link of the chain, HEV-transmission due to contact with a contact-infected pig was observed. Transmission of HEV was monitored by reverse transcriptase polymerase chain reaction (RT-PCR) on individual faecal samples taken every two/three days. For susceptible pigs, the average period between exposure to an infectious pig and HEV excretion was six days (standard deviation: 4). The length of HEV-excretion (i.e. infectious period) was estimated at 49 days (95% confidence interval (CI): 17-141) for block 1 and 13 days (95% CI: 11-17) for block 2. The R0 for contact-exposure was estimated to be 8.8 (95% CI: 4-19), showing the potential of HEV to cause epidemics in populations of pigs.


Preventive Veterinary Medicine | 1999

Transmission of classical swine fever virus within herds during the 1997-1998 epidemic in The Netherlands.

Arjan Stegeman; A.R.W. Elbers; A. Bouma; Hans de Smit; Mart C.M. de Jong

In this paper, we describe the transmission of Classical Swine Fever virus (CSF virus) within herds during the 1997-1998 epidemic in The Netherlands. In seven herds where the infection started among individually housed breeding stock, all breeding pigs had been tested for antibodies to CSF virus shortly before depopulation. Based upon these data, the transmission of CSF virus between pigs was described as exponential growth in time with a parameter r, that was estimated at 0.108 (95% confidence interval (95% CI) 0.060-0.156). The accompanying per-generation transmission (expressed as the basic reproduction ratio, R0) was estimated at 2.9. Based upon this characterisation, a calculation method was derived with which serological findings at depopulation can be used to calculate the period in which the virus was with a certain probability introduced into that breeding stock. This model was used to estimate the period when the virus had been introduced into 34 herds where the infection started in the breeding section. Of these herds, only a single contact with a herd previously infected had been traced. However, in contrast with the seven previously mentioned herds, only a sample of the breeding pigs had been tested before depopulation (as was the common procedure during the epidemic). The observed number of days between the single contact with an infected herd and the day of sampling of these 34 herds fitted well in the model. Thus, we concluded that the model and transmission parameter was in agreement with the transmission between breeding pigs in these herds. Because of the limited sample size and because it was usually unknown in which specific pen the infection started, we were unable to estimate transmission parameters for weaned piglets and finishing pigs from the data collected during the epidemic. However, from the results of controlled experiments in which R0 was estimated as 81 between weaned piglets and 14 between heavy finishing pigs (Laevens et al., 1998a. Vet. Quart. 20, 41-45; Laevens et al., 1999. Ph.D. Thesis), we constructed a simple model to describe the transmission of CSF virus in compartments (rooms) housing finishing pigs and weaned piglets. From the number of pens per compartment, the number of pigs per pen, the numbers of pigs tested for antibodies to CSF virus and the distribution of the seropositive pigs in the compartment, this model gives again a period in which the virus most probably entered the herd. Using the findings in 41 herds where the infection started in the section of the finishers or weaned piglets of the age of 8 weeks or older, and of which only a single contact with a herd previously infected was known, there was no reason to reject the model. Thus, we concluded that the transmission between weaned piglets and finishing pigs during the epidemic was not significantly different from the transmission observed in the experiments.


Preventive Veterinary Medicine | 1992

A method to calculate—for computer-simulated infections—the threshold value, R0, that predicts whether or not the infection will spread

Mart C.M. de Jong; Odo Diekmann

Computer-simulation models of infections can easily incorporate heterogeneity among animals (important for the effect of control measures) by allocating animals to various classes. These classes are termed ‘states’ and the change from one state to another, during a unit of time, is termed a ‘transition’. Hence, most computer models are state-transition models. Using a fairly universal representation state-transition models, we derived an analytic expression (a formula) for the basic reproduction ratio of infection (R0), i.e. the number of cases caused by one typical infectious animal. When R0>1, the infection can spread; when R0<1, the infection will disappear. Therefore, a strategy for controlling an infective agent is effective when, and only when, the ratio for that strategy is less than one. Using the reproduction-ratio formula derived in this paper (instead of interpreting results from a large number of simulations) has several advantages for veterinary researchers. The structure of the formula allows investigators to understand how certain parameters (e.g. infection, demographic or control-strategy parameters), if changed, will influence the ratio. Moreover, the ratio can be calculated directly and quickly, hence whether an infection will spread or disappear can be determined quickly. In addition, because certain parameters present in the original model disappear in the formula for the ratio, they can be eliminated as influencing the effectiveness of the control strategy. Finally, the value of R0 can be interpolated for parameter values (e.g. rates of infection, contact rates, replacement rates and herd sizes) other than those evaluated originally.

Collaboration


Dive into the Mart C.M. de Jong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Frankena

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.A.M. Graat

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A.R.W. Elbers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

T.H.J. Hagenaars

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

G. Nodelijk

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Michiel van Boven

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

P. Bijma

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A.J.A. Aarnink

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge