Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Colomer-Lluch is active.

Publication


Featured researches published by Marta Colomer-Lluch.


PLOS ONE | 2011

Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples

Marta Colomer-Lluch; Juan Jofre; Maite Muniesa

Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, β-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to β-lactam antibiotics is conferred by β-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to β-lactam antibiotics, namely two β-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment.


Antimicrobial Agents and Chemotherapy | 2011

Bacteriophages Carrying Antibiotic Resistance Genes in Fecal Waste from Cattle, Pigs, and Poultry

Marta Colomer-Lluch; Lejla Imamovic; Juan Jofre; Maite Muniesa

ABSTRACT This study evaluates the occurrence of bacteriophages carrying antibiotic resistance genes in animal environments. blaTEM, blaCTX-M (clusters 1 and 9), and mecA were quantified by quantitative PCR in 71 phage DNA samples from pigs, poultry, and cattle fecal wastes. Densities of 3 to 4 log10 gene copies (GC) of blaTEM, 2 to 3 log10 GC of blaCTX-M, and 1 to 3 log10 GC of mecA per milliliter or gram of sample were detected, suggesting that bacteriophages can be environmental vectors for the horizontal transfer of antibiotic resistance genes.


Future Microbiology | 2013

Potential impact of environmental bacteriophages in spreading antibiotic resistance genes

Maite Muniesa; Marta Colomer-Lluch; Juan Jofre

The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic resistance genes is gaining momentum. Such transduction might be vital in horizontal transfer from environmental to human body-associated biomes and here we review many lines of evidence supporting this notion. It is well accepted that bacteriophages are the most abundant entities in most environments, where they have been shown to be quite persistent. This fact, together with the ability of many phages to infect bacteria belonging to different taxa, makes them suitable vehicles for gene transfer. Metagenomic studies confirm that substantial percentages of the bacteriophage particles present in most environments contain bacterial genes, including mobile genetic elements and antibiotic resistance genes. When specific genes of resistance to antibiotics are detected by real-time PCR in the bacteriophage populations of different environments, only tenfold lower numbers of these genes are observed, compared with those found in the corresponding bacterial populations. In addition, the antibiotic resistance genes from these bacteriophages are functional and generate resistance to the bacteria when these genes are transfected. Finally, reports about the transduction of antibiotic resistance genes are on the increase.


Antimicrobial Agents and Chemotherapy | 2014

Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Human Fecal Samples

Pablo Quirós; Marta Colomer-Lluch; Alexandre Martínez-Castillo; Elisenda Miró; Marc Argente; Juan Jofre; Ferran Navarro; Maite Muniesa

ABSTRACT A group of antibiotic resistance genes (ARGs) (blaTEM, blaCTX-M-1, mecA, armA, qnrA, and qnrS) were analyzed by real-time quantitative PCR (qPCR) in bacteriophage DNA isolated from feces from 80 healthy humans. Seventy-seven percent of the samples were positive in phage DNA for one or more ARGs. blaTEM, qnrA, and, blaCTX-M-1 were the most abundant, and armA, qnrS, and mecA were less prevalent. Free bacteriophages carrying ARGs may contribute to the mobilization of ARGs in intra- and extraintestinal environments.


Environmental Science & Technology | 2014

Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions.

William Calero-Cáceres; Ana Melgarejo; Marta Colomer-Lluch; Claudia Stoll; F. Lucena; Juan Jofre; Maite Muniesa

The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs found in bacteria can become mobilized in bacteriophage particles in the environment. Sludge derived from secondary treatment in wastewater treatment plants (WWTPs) constitutes a concentrated pool of bacteria and phages that are removed during the treatment process. This study evaluates the prevalence of ARGs in the bacterial and phage fractions of anaerobic digested sludge; five ARGs (blaTEM, blaCTX-M, qnrA, qnrS, and sul1) are quantified by qPCR. Comparison between the wastewater and sludge revealed a shift in the prevalence of ARGs (blaTEM and sul1 became more prevalent in sludge), suggesting there is a change in the bacterial and phage populations from wastewater to those selected during the secondary treatment and the later anaerobic mesophilic digestion of the sludge. ARGs densities were higher in the bacterial than in the phage fraction, with high densities in both fractions; particularly for blaTEM and sul1 (5 and 8 log10 gene copies (GC)/g, respectively, in bacterial DNA; 5.5 and 4.4 log10 GC/g, respectively, in phage DNA). These results question the potential agricultural uses of treated sludge, as it could contribute to the spread of ARGs in the environment and have an impact on the bacterial communities of the receiving ecosystem.


Journal of Antimicrobial Chemotherapy | 2014

Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes

Marta Colomer-Lluch; Juan Jofre; Maite Muniesa

OBJECTIVES This study quantifies quinolone antibiotic resistance genes (qnrA and qnrS) in DNA of phage particles isolated from faecally polluted waters and evaluates the influence of phage inducers on the abundance of antibiotic resistance genes in packaged DNA. METHODS qnrA and qnrS were quantified by qPCR in DNA of phage particles isolated from 18 raw urban wastewater samples, 18 river samples and 28 archived samples of animal wastewater. The bacterial fraction of the samples was treated with mitomycin C, ciprofloxacin, EDTA or sodium citrate under different conditions, and the number of resistance genes in DNA of phage particles was compared with the non-induced samples. RESULTS qnrA was more prevalent than qnrS, with 100% of positive samples in urban wastewater and river and 71.4% of positive samples in animal wastewater. Densities of qnrA ranged from 2.3 × 10(2) gene copies (GC)/mL in urban wastewater to 7.4 × 10(1) GC/mL in animal wastewater. qnrS was detected in 38.9% of urban wastewater samples, in 22.2% of river samples and only in one animal wastewater sample (3.6%). Despite the lower prevalence, qnrS densities reached values of 10(3) GC/mL. Both qnr genes and other resistance genes assayed (blaTEM and blaCTX-M) showed a significant increase in DNA of phage particles when treated with EDTA or sodium citrate, while mitomycin C and ciprofloxacin showed no effect under the different conditions assayed. CONCLUSIONS This study confirms the contribution of phages to the mobilization of resistance genes and the role of the environment and certain inducers in the spread of antibiotic resistance genes by means of phages.


Journal of Antimicrobial Chemotherapy | 2013

Detection of quinolone-resistant Escherichia coli isolates belonging to clonal groups O25b:H4-B2-ST131 and O25b:H4-D-ST69 in raw sewage and river water in Barcelona, Spain

Marta Colomer-Lluch; Azucena Mora; Cecilia López; Rosalía Mamani; Ghizlane Dahbi; Juan Marzoa; Alexandra Herrera; Susana Viso; Jesús E. Blanco; Miguel Blanco; María del Pilar León-Castro Alonso; J. Jofre; Maite Muniesa; Jorge Blanco

OBJECTIVES The present study was carried out to evaluate the prevalence of clonal group O25b:H4-B2-ST131 in water environments with faecal pollution (urban sewage and river water) in the north-east of Spain and to study the virulence gene content of environmental isolates and to compare them with isolates causing human extraintestinal infections in Spain. METHODS This study was performed with 10 sewage samples (collected in Catalonia, north-eastern Spain, in autumn 2009 from the influent raw urban sewage of a wastewater treatment plant that serves a large urban area) and 6 river water samples (collected monthly from February to April 2010 in the Llobregat river catchment area, near Barcelona, a watercourse subjected to heavy anthropogenic pressure). Escherichia coli colonies were screened by PCR for the rfbO25b gene associated with the clonal group O25b:H4-B2-ST131. Sequence types (STs), serotypes, virulence genes, PFGE profiles, antimicrobial resistance and extended-spectrum β-lactamase (ESBL) enzymes were determined in 75 E. coli isolates positive for the O25b molecular subtype. RESULTS Of the 75 O25b-positive isolates, 51 belonged to the O25b:H4-B2-ST131 clonal group and the remaining 24 belonged to clonal group O25b:H4-D-ST69. The majority of ST69 isolates (23 of 24) were isolated from urban sewage, whereas ST131 isolates were isolated from urban sewage (25 isolates) as well as from river water (26 isolates). ST131 and ST69 isolates carried 4-13 virulence genes, the majority (82%) being quinolone resistant. CONCLUSIONS We showed the presence of E. coli isolates belonging to clonal groups O25b:H4-B2-ST131 and O25b:H4-D-ST69 in raw sewage and river water in Barcelona. Furthermore, we observed that the environmental O25b:H4-B2-ST131 isolates showed similar virulence and macrorestriction profiles to clinical human isolates. To our knowledge, this is the first study describing the O25b:H4-D-ST69 clonal group.


Gastrointestinal Endoscopy | 2013

Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?

Maite Muniesa; Marta Colomer-Lluch; Juan Jofre

Environments without any contact with anthropogenic antibiotics show a great abundance of antibiotic resistance genes that use to be chromosomal and are part of the core genes of the species that harbor them. Some of these genes are shared with human pathogens where they appear in mobile genetic elements. Diversity of antibiotic resistance genes in non-contaminated environments is much greater than in human and animal pathogens, and in environments contaminated with antibiotic from anthropogenic activities. This suggests the existence of some bottleneck effect for the mobilization of antibiotic resistance genes among different biomes. Bacteriophages have characteristics that make them suitable vectors between different biomes, and as well for transferring genes from biome to biome. Recent metagenomic studies and detection of bacterial genes by genomic techniques in the bacteriophage fraction of different microbiota provide indirect evidences that the mobilization of genes mediated by phages, including antibiotic resistance genes, is far more relevant than previously thought. Our hypothesis is that bacteriophages might be of critical importance for evading one of the bottlenecks, the lack of ecological connectivity that modulates the pass of antibiotic resistance genes from natural environments such as waters and soils, to animal and human microbiomes. This commentary concentrates on the potential importance of bacteriophages in transferring resistance genes from the environment to human and animal body microbiomes, but there is no doubt that transduction occurs also in body microbiomes.


Environment International | 2014

Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population

Marta Colomer-Lluch; William Calero-Cáceres; Sihem Jebri; Fatma Hmaied; Maite Muniesa; Juan Jofre

The emergence and increased prevalence of antibiotic resistance genes (ARGs) in the environment may pose a serious global health concern. This study evaluates the abundance of several ARGs in bacterial and bacteriophage DNA via real-time qPCR in samples from five different sampling points in Tunisia; three wastewater treatment plants (WWTP 1, 2 and 3) and wastewater from two abattoirs slaughtering different animals. Results are compared with those obtained in the Barcelona area, in northeast Spain. Eight ARGs were quantified by qPCR from total and phage DNA fraction from the samples. Three β-lactamases (bla(TEM), bla(CTX-M) cluster 1 and bla(CTX-M) cluster 9), two quinolone resistance genes (qnrA and qnrS), the mecA gene that confers resistance to methicillin in Staphylococcus aureus, the emerging armA gene, conferring resistance to aminoglycosides and sul1, the most extended gene conferring resistance to sulfonamides, were evaluated. Sul1 and bla(TEM) were the most prevalent ARGs detected at all five Tunisian sampling points, similarly with the observations in Barcelona. bla(CTX-M-9) was more prevalent than bla(CTX-M-1) both in bacterial and DNA within phage particles in all samples analysed. mecA and armA were almost absent in Tunisian waters from human or animal origin in contrast with Barcelona that showed a medium prevalence. qnrA was more prevalent than qnrS in bacterial and phage DNA from all sampling points. In conclusion, our study shows that ARGs are found in the bacterial and is reflected in the phage DNA fraction of human and animal wastewaters. The densities of each ARGs vary depending on the ARGs shed by each population and is determined by the characteristics of each area. Thus, the evaluation of ARGs in wastewaters seems to be suitable as marker reflecting the antibiotic resistance patterns of a population.


Avances en microbiología de los alimentos, 2012, ISBN 978-84-695-4093-0, págs. 216-217 | 2012

Efecto del EDTA en la inducción de fagos portadores de genes de virulencia en "Escherichia coli" productora de toxina shiga

Maite Muniesa; Alexandre Martínez-Castillo; Marta Colomer-Lluch; Lejla Imamovic

Collaboration


Dive into the Marta Colomer-Lluch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Jofre

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Herrera

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Azucena Mora

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Cecilia López

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Elisenda Miró

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

F. Lucena

University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge