Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Dondini is active.

Publication


Featured researches published by Marta Dondini.


Gcb Bioenergy | 2009

The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions

Marta Dondini; Astley Hastings; Gustavo Saiz; Michael Jones; Pete Smith

Growing bioenergy crops such as Miscanthus has the potential to mitigate atmospheric carbon dioxide emissions by the replacement of fossil fuels and by storing carbon (C) in the soil due to land use change. Here we compare direct measurements of soil organic C fractions made in Carlow (Ireland) to model predictions made by RothC and a cohort model. Our results show that when Miscanthus is grown on land previously under arable agriculture, the soil organic C will increase to a level above that of native pasture, as Miscanthus organic material is shown to have a slow decomposition rate. In addition we demonstrate that for measured organic C, fractions of different lability are similar to the C pools used in RothC. Using the model predictions from RothC and Miscanthus yields from MISCANFOR, we predict that in Ireland, changing the land use from arable to Miscanthus plantations has the potential to store between 2 and 3 Mg C ha−1 y−1 depending on the crop yield and the initial soil organic C level.


Gcb Bioenergy | 2009

Carbon sequestration under Miscanthus: a study of 13C distribution in soil aggregates

Marta Dondini; Kees Jan van Groenigen; Ilaria Del Galdo; Michael Jones

The growing of bioenergy crops has been widely suggested as a key strategy in mitigating anthropogenic CO2 emissions. However, the full mitigation potential of these crops cannot be assessed without taking into account their effect on soil carbon (C) dynamics. Therefore, we analyzed the C dynamics through four soil depths under a 14‐year‐old Miscanthus plantation, established on former arable land. An adjacent arable field was used as a reference site. Combining soil organic matter (SOM) fractionation with 13C natural abundance analyses, we were able to trace the fate of Miscanthus‐derived C in various physically protected soil fractions. Integrated through the whole soil profile, the total amount of soil organic carbon (SOC) was higher under Miscanthus than under arable crop, this difference was largely due to the input of new C. The C stock of the macroaggregates (M) under Miscanthus was significantly higher than those in the arable land. Additionally, the C content of the micro‐within macroaggregates (mM) were higher in the Miscanthus soil as compared with the arable soil. Analysis of the intramicroaggregates particulate organic matter (POM) suggested that the increase C storage in mM under Miscanthus was caused by a decrease in disturbance of M. Thus, the difference in C content between the two land use systems is largely caused by soil C storage in physically protected SOM fractions. We conclude that when Miscanthus is planted on former arable land, the resulting increase in soil C storage contributes considerably to its CO2 mitigation potential.


Gcb Bioenergy | 2015

Implications of land-use change to Short Rotation Forestry in Great Britain for soil and biomass carbon

Aidan M. Keith; Kim Parmar; Mike Perks; Ewan Mackie; Marta Dondini; Niall P. McNamara

Land‐use change can have significant impacts on soil and aboveground carbon (C) stocks and there is a clear need to identify sustainable land uses which maximize C mitigation potential. Land‐use transitions from agricultural to bioenergy crops are increasingly common in Europe with one option being Short Rotation Forestry (SRF). Research on the impact on C stocks of the establishment of SRF is limited, but given the potential for this bioenergy crop in temperate climates, there is an evident knowledge gap. Here, we examine changes in soil C stock following the establishment of SRF using combined short (30 cm depth) and deep (1 m depth) soil cores at 11 sites representing 29 transitions from agriculture to SRF. We compare the effects of tree species including 9 coniferous, 16 broadleaved and 4 Eucalyptus transitions. SRF aboveground and root biomass were also estimated in 15 of the transitions using tree mensuration data allowing assessments of changes in total ecosystem C stock. Planting coniferous SRF, compared to broadleaved and Eucalyptus SRF, resulted in greater accumulation of litter and overall increased soil C stock relative to agricultural controls. Though broadleaved SRF had no overall effect on soil C stock, it showed the most variable response suggesting species‐specific effects and interactions with soil types. While Eucalyptus transitions induced a reduction in soil C stocks, this was not significant unless considered on a soil mass basis. Given the relatively young age and limited number of Eucalyptus plantations, it is not possible to say whether this reduction will persist in older stands. Combining estimates of C stocks from different ecosystem components (e.g., soil, aboveground biomass) reinforced the accumulation of C under coniferous SRF, and indicates generally positive effects of SRF on whole‐ecosystem C. These results fill an important knowledge gap and provide data for modelling of future scenarios of LUC.


Gcb Bioenergy | 2015

Modelling the carbon cycle of Miscanthus plantations: existing models and the potential for their improvement

Andy D. Robertson; Christian A. Davies; Pete Smith; Marta Dondini; Niall P. McNamara

The lignocellulosic perennial grass Miscanthus has received considerable attention as a potential bioenergy crop over the last 25 years, but few commercial plantations exist globally. This is partly due to the uncertainty associated with claims that land‐use change (LUC) to Miscanthus will result in both commercially viable yields and net increases in carbon (C) storage. To simulate what the effects may be after LUC to Miscanthus, six process‐based models have been parameterized for Miscanthus and here we review how these models operate. This review provides an overview of the key Miscanthus soil organic matter models and then highlights what measurers can do to accelerate model development. Each model (WIMOVAC, BioCro, Agro‐IBIS, DAYCENT, DNDC and ECOSSE) is capable of simulating biomass production and soil C dynamics based on specific site characteristics. Understanding the design of these models is important in model selection as well as being important for field researchers to collect the most relevant data to improve model performance. The rapid increase in models parameterized for Miscanthus is promising, but refinements and improvements are still required to ensure that model predictions are reliable and can be applied to spatial scales relevant for policy. Specific improvements, needed to ensure the models are applicable for a range of environmental conditions, come under two categories: (i) increased data generation and (ii) development of frameworks and databases to allow simulations of ranging scales. Research into nonfood bioenergy crops such as Miscanthus is relatively recent and this review highlights that there are still a number of knowledge gaps regarding Miscanthus specifically. For example, the low input requirements of Miscanthus make it particularly attractive as a bioenergy crop, but it is essential that we increase our understanding of the crops nutrient remobilization and ability to host N‐fixing organisms to derive the most accurate simulations.


Gcb Bioenergy | 2016

Initial soil C and land use history determine soil C sequestration under perennial bioenergy crops

Aidan M. Keith; Dafydd M.O. Elias; Marta Dondini; Pete Smith; Johnathan C. Oxley; Niall P. McNamara

In the UK and other temperate regions, short rotation coppice (SRC) and Miscanthus x giganteus (Miscanthus) are two of the leading ‘second‐generation’ bioenergy crops. Grown specifically as a low‐carbon (C) fossil fuel replacement, calculations of the climate mitigation provided by these bioenergy crops rely on accurate data. There are concerns that uncertainty about impacts on soil C stocks of transitions from current agricultural land use to these bioenergy crops could lead to either an under‐ or overestimate of their climate mitigation potential. Here, for locations across mainland Great Britain (GB), a paired‐site approach and a combination of 30‐cm‐ and 1‐m‐deep soil sampling were used to quantify impacts of bioenergy land‐use transitions on soil C stocks in 41 commercial land‐use transitions; 12 arable to SRC, 9 grasslands to SRC, 11 arable to Miscanthus and 9 grasslands to Miscanthus. Mean soil C stocks were lower under both bioenergy crops than under the grassland controls but only significant at 0–30 cm. Mean soil C stocks at 0–30 cm were 33.55 ± 7.52 Mg C ha−1 and 26.83 ± 8.08 Mg C ha−1 lower under SRC (P = 0.004) and Miscanthus plantations (P = 0.001), respectively. Differences between bioenergy crops and arable controls were not significant in either the 30‐cm or 1‐m soil cores and smaller than for transitions from grassland. No correlation was detected between change in soil C stock and bioenergy crop age (time since establishment) or soil texture. Change in soil C stock was, however, negatively correlated with the soil C stock in the original land use. We suggest, therefore, that selection of sites for bioenergy crop establishment with lower soil C stocks, most often under arable land use, is the most likely to result in increased soil C stocks.


Philosophical Transactions of the Royal Society B | 2012

Systems approaches in global change and biogeochemistry research.

Pete Smith; Fabrizio Albanito; Madeleine Jane Bell; Jessica Bellarby; Sergey Blagodatskiy; Arindam Datta; Marta Dondini; Nuala Fitton; Helen Flynn; Astley Hastings; Jon Hillier; Edward O. Jones; Matthias Kuhnert; Dali Rani Nayak; Mark Pogson; Mark Richards; Gosia Sozanska-Stanton; Shifeng Wang; Jagadeesh Yeluripati; Emily Bottoms; Chris Brown; Jenny Farmer; Diana Feliciano; Cui Hao; Andy D. Robertson; Sylvia H. Vetter; Hon Man Wong; Jo Smith

Systems approaches have great potential for application in predictive ecology. In this paper, we present a range of examples, where systems approaches are being developed and applied at a range of scales in the field of global change and biogeochemical cycling. Systems approaches range from Bayesian calibration techniques at plot scale, through data assimilation methods at regional to continental scales, to multi-disciplinary numerical model applications at country to global scales. We provide examples from a range of studies and show how these approaches are being used to address current topics in global change and biogeochemical research, such as the interaction between carbon and nitrogen cycles, terrestrial carbon feedbacks to climate change and the attribution of observed global changes to various drivers of change. We examine how transferable the methods and techniques might be to other areas of ecosystem science and ecology.


Gcb Bioenergy | 2016

Simulation of greenhouse gases following land-use change to bioenergy crops using the ECOSSE model. A comparison between site measurements and model predictions

Marta Dondini; Mark Richards; Mark Pogson; Jon McCalmont; Julia Drewer; Rachel Marshall; Ross Morrison; Sirwan Yamulki; Zoe Harris; Giorgio Alberti; Lukas Siebicke; Gail Taylor; Mike Perks; Jon Finch; Niall P. McNamara; Joanne Ursula Smith; Pete Smith

This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes from short rotation coppice willow (SRC‐Willow), short rotation forestry (SRF‐Scots Pine) and Miscanthus after land‐use change from conventional systems (grassland and arable). We simulate heterotrophic respiration (Rh), nitrous oxide (N2O) and methane (CH4) fluxes at four paired sites in the UK and compare them to estimates of Rh derived from the ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber (IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. Significant association between modelled and EC‐derived Rh was found under Miscanthus, with correlation coefficient (r) ranging between 0.54 and 0.70. Association between IRGA‐derived Rh and modelled outputs was statistically significant at the Aberystwyth site (r = 0.64), but not significant at the Lincolnshire site (r = 0.29). At all SRC‐Willow sites, significant association was found between modelled and measurement‐derived Rh (0.44 ≤ r ≤ 0.77); significant error was found only for the EC‐derived Rh at the Lincolnshire site. Significant association and no significant error were also found for SRF‐Scots Pine and perennial grass. For the arable fields, the modelled CO2 correlated well just with the IRGA‐derived Rh at one site (r = 0.75). No bias in the model was found at any site, regardless of the measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N2O were shown to represent a small proportion of the total GHG balance; these fluxes have been modelled adequately on a monthly time‐step. This study provides confidence in using ECOSSE for predicting the impacts of future land use on GHG balance, at site level as well as at national level.


Gcb Bioenergy | 2015

Evaluation of the ECOSSE model for simulating soil carbon under short rotation forestry energy crops in Britain

Marta Dondini; Edward O. Jones; Mark Richards; Mark Pogson; Aidan M. Keith; Mike Perks; Niall P. McNamara; Joanne Ursula Smith; Pete Smith

Understanding and predicting the effects of land‐use change to short rotation forestry (SRF) on soil carbon (C) is an important requirement for fully assessing the C mitigation potential of SRF as a bioenergy crop. There is little current knowledge of SRF in the UK and in particular a lack of consistent measured data sets on the direct impacts of land use change on soil C stocks. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas (GHG) emissions in mineral and organic soils. The ECOSSE model has already been applied spatially to simulate land‐use change impacts on soil C and GHG emissions. However, it has not been extensively evaluated under SRF. Eleven sites comprising 29 transitions in Britain, representing land‐use change from nonwoodland land uses to SRF, were selected to evaluate the performance of ECOSSE in predicting soil C and soil C change in SRF plantations. The modelled C under SRF showed a strong correlation with the soil C measurements at both 0–30 cm (R = 0.93) and 0–100 cm soil depth (R = 0.82). As for the SRF plots, the soil C at the reference sites have been accurately simulated by the model. The extremely high correlation for the reference fields (R ≥ 0.99) shows a good performance of the model spin‐up. The statistical analysis of the model performance to simulate soil C and soil C changes after land‐use change to SRF highlighted the absence of significant error between modelled and measured values as well as the absence of significant bias in the model. Overall, this evaluation reinforces previous studies on the ability of ECOSSE to simulate soil C and emphasize its accuracy to simulate soil C under SRF plantations.


Gcb Bioenergy | 2017

High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom

Mark Richards; Mark Pogson; Marta Dondini; Edward O. Jones; Astley Hastings; Dagmar Nadja Henner; Matthew J. Tallis; Eric Casella; Robert W. Matthews; Paul A. Henshall; Suzanne Milner; Gail Taylor; Niall P. McNamara; Jo Smith; Pete Smith

We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.


Gcb Bioenergy | 2016

Evaluation of the ECOSSE model for simulating soil organic carbon under Miscanthus and short rotation coppice-willow crops in Britain

Marta Dondini; Mark Richards; Mark Pogson; Edwards O. Jones; Aidan M. Keith; Niall P. McNamara; Joanne Ursula Smith; Pete Smith

In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)‐willow. The amount of SOC sequestered in the soil is a function of site‐specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC‐willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land‐use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC‐willow. Twenty‐nine locations in the United Kingdom, comprising 19 paired transitions to SRC‐willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC‐willow plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC‐willow plantations in the United Kingdom, provide confidence in using this process‐based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.

Collaboration


Dive into the Marta Dondini's collaboration.

Top Co-Authors

Avatar

Pete Smith

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niall P. McNamara

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gail Taylor

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Zoe Harris

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge