Zoe Harris
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zoe Harris.
Gcb Bioenergy | 2017
Joseph R. Jenkins; Maud Viger; Elizabeth C. Arnold; Zoe Harris; Maurizio Ventura; Franco Miglietta; Cyril Girardin; Richard J. Edwards; Cornelia Rumpel; Flavio Fornasier; Costanza Zavalloni; Giustino Tonon; Giorgio Alberti; Gail Taylor
Wide‐scale application of biochar to soil has been suggested as a mechanism to offset increases in CO2 emissions through the long‐term sequestration of a carbon rich and inert substance to the soil, but the implications of this for soil diversity and function remain to be determined. Biochar is capable of inducing changes in soil bacterial communities, but the exact impacts of its application are poorly understood. Using three European sites [UK SRC, short rotation coppice, French grassland (FR) and Italian SRF, short rotation forestry (IT)] treated with identical biochar applications, we undertook 16S and ITS amplicon DNA sequencing. In addition, we carried out assessments of community change over time and N and P mobilization in the UK. Significant changes in bacterial and community structure occurred due to treatment, although the nature of the changes varied by site. STAMP differential abundance analysis showed enrichment of Gemmatimonadete and Acidobacteria in UK biochar plots 1 year after application, whilst control plots exhibited enriched Gemmataceae, Isosphaeraceae and Koribacteraceae. Increased mobility of ammonium and phosphates was also detected after 1 year, coupled with a shift from acid to alkaline phosphomonoesterase activity, which may suggest an ecological and functional shift towards a more copiotrophic ecology. Italy also exhibited enrichments, in both the Proteobacteria (driven by an increase in the order Rhizobiales) and the Gemmatimonadetes. No significant change in the abundance of individual taxa was noted in FR, although a small significant change in unweighted UNIFRAC occurred, indicating variation in the identities of taxa present due to treatment. Fungal β diversity was affected by treatment in IT and FR, but was unaffected in UK samples. The effects of time and site were greater than that of biochar application in UK samples. Overall, this report gives a tantalizing view of the soil microbiome at several sites across Europe and suggests that although application of biochar has significant effects on microbial communities, these may be small compared with the highly variable soil microbiome that is found in different soils and changes with time.
Gcb Bioenergy | 2016
Marta Dondini; Mark Richards; Mark Pogson; Jon McCalmont; Julia Drewer; Rachel Marshall; Ross Morrison; Sirwan Yamulki; Zoe Harris; Giorgio Alberti; Lukas Siebicke; Gail Taylor; Mike Perks; Jon Finch; Niall P. McNamara; Joanne Ursula Smith; Pete Smith
This article evaluates the suitability of the ECOSSE model to estimate soil greenhouse gas (GHG) fluxes from short rotation coppice willow (SRC‐Willow), short rotation forestry (SRF‐Scots Pine) and Miscanthus after land‐use change from conventional systems (grassland and arable). We simulate heterotrophic respiration (Rh), nitrous oxide (N2O) and methane (CH4) fluxes at four paired sites in the UK and compare them to estimates of Rh derived from the ecosystem respiration estimated from eddy covariance (EC) and Rh estimated from chamber (IRGA) measurements, as well as direct measurements of N2O and CH4 fluxes. Significant association between modelled and EC‐derived Rh was found under Miscanthus, with correlation coefficient (r) ranging between 0.54 and 0.70. Association between IRGA‐derived Rh and modelled outputs was statistically significant at the Aberystwyth site (r = 0.64), but not significant at the Lincolnshire site (r = 0.29). At all SRC‐Willow sites, significant association was found between modelled and measurement‐derived Rh (0.44 ≤ r ≤ 0.77); significant error was found only for the EC‐derived Rh at the Lincolnshire site. Significant association and no significant error were also found for SRF‐Scots Pine and perennial grass. For the arable fields, the modelled CO2 correlated well just with the IRGA‐derived Rh at one site (r = 0.75). No bias in the model was found at any site, regardless of the measurement type used for the model evaluation. Across all land uses, fluxes of CH4 and N2O were shown to represent a small proportion of the total GHG balance; these fluxes have been modelled adequately on a monthly time‐step. This study provides confidence in using ECOSSE for predicting the impacts of future land use on GHG balance, at site level as well as at national level.
Biofuels | 2014
Zoe Harris; Neil Mcnamara; Marta Dondini; Jon Finch; Mike Perks; James Morison; Iain S. Donnison; Kerrie Farrar; Saran Sohi; Phil Ineson; Jonathan Oxley; Pete Smith; Gail Taylor
There is increasing interest in the use of nonfood second-generation lignocellulosic feedstocks and a move away from food crops for bioenergy applications, but questions still remain on sustainability. Empirical data are needed to quantify the GHG balance of land-use transition to lignocellulosic bioenergy cropping systems, to inform lifecycle analyses and aid model validation. The aim of this project ‘Ecosystem Land Use Modeling and Soil Carbon GHG Flux Trial’ is to produce a framework for predicting the sustainability of bioenergy deployment across the UK. This GB£4m consortium project is commissioned and funded by the Energy Technologies Institute, UK.
Gcb Bioenergy | 2017
Zoe Harris; Giorgio Alberti; Maud Viger; Joe R. Jenkins; Niall P. McNamara; Gail Taylor
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m−2 yr−1) than in grassland (1522 ± 39 g C m−2 yr−1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m−2 yr−1 and SRC willow a net sink, −620 ± 18 g C m−2 yr−1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m−2 yr−1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.
European Journal of Soil Science | 2017
Marta Dondini; Giorgio Alberti; G. Delle Vedove; Maurizio Ventura; Giustino Tonon; Maud Viger; Zoe Harris; Joseph R. Jenkins; M. Richards; Mark Pogson; Gail Taylor; J. U. Smith; Pete Smith
Acknowledgements This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI), and to Carbo-BioCrop (http://www.carbobiocrop.ac.uk; a NERC funded project; NE/H010742/1), UKERC Phase II and III (NERC; NE/H013237/1), MAGLUE (http://www.maglue.ac.uk; an EPSRC funded project; EP/M013200/1) and as part of the Seventh Framework For Research Programme of the EU, within the EUROCHAR project (N 265179) and EXPEER within WU FP7-Infrastructures. We acknowledge the use of the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We thank two anonymous reviewers and Dr William van Dijk for their valuable suggestions.
Biomass & Bioenergy | 2015
Zoe Harris; Rebecca Spake; Gail Taylor
Archive | 2016
G. Xenakis; Mike Perks; Zoe Harris; Jon McCalmont; D. Rylett; M. Brooks; J.G. Evans; Jon Finch; Ross Morrison; Giorgio Alberti; Ian Donnison; Lukas Siebicke; James Morison; Gail Taylor; Niall P. McNamara
Archive | 2014
Jon Finch; Rachel Marshall; Dafydd M.O. Elias; Emily L. Clark; Julia Drewer; Ross Morrison; Johnathan C. Oxley; James Morison; Mike Perks; Lukas Siebicke; Matt Wilkinson; Sirwan Yamulki; Iain S. Donnison; Kerrie Farrar; Alice Massey; Jon McCalmont; Giorgio Alberti; Zoe Harris; Gail Taylor; Niall P. McNamara
BioFuels | 2014
Zoe Harris; Niall P. McNamara; Marta Dondini; John Finch; Mike Perks; Jim Morison; Iain S. Donnison; Kerry Farrar; Saran Sohi
2014 AGU Fall Meeting | 2014
Zoe Harris