Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Florio is active.

Publication


Featured researches published by Marta Florio.


Development | 2014

Neural progenitors, neurogenesis and the evolution of the neocortex

Marta Florio; Wieland B. Huttner

The neocortex is the seat of higher cognitive functions and, in evolutionary terms, is the youngest part of the mammalian brain. Since its origin, the neocortex has expanded in several mammalian lineages, and this is particularly notable in humans. This expansion reflects an increase in the number of neocortical neurons, which is determined during development and primarily reflects the number of neurogenic divisions of distinct classes of neural progenitor cells. Consequently, the evolutionary expansion of the neocortex and the concomitant increase in the numbers of neurons produced during development entail interspecies differences in neural progenitor biology. Here, we review the diversity of neocortical neural progenitors, their interspecies variations and their roles in determining the evolutionary increase in neuron numbers and neocortex size.


Science | 2015

Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion

Marta Florio; Mareike Albert; Elena Taverna; Takashi Namba; Holger Brandl; Eric Lewitus; Christiane Haffner; Alex M. Sykes; Fong Kuan Wong; Jula Peters; Elaine Guhr; Sylvia Klemroth; Kay Prüfer; Janet Kelso; Ronald Naumann; Ina Nüsslein; Andreas Dahl; R Lachmann; Svante Pääbo; Wieland B. Huttner

Build the builders before the brain Humans are much smarter than mice—key to this is the relative thickness of the human brains neocortex. Florio et al. combed through genes expressed in the progenitor cells that build the neocortex and zeroed in on one gene found in humans but not in mice. The gene, which seems to differentiate humans from chimpanzees, drives proliferation of the key progenitor cells. Mice expressing this human gene during development built more elaborate brains. Science, this issue p. 1465 A gene found in modern humans but not mice drives proliferation of the neural progenitor cells that build the brain’s neocortex. Evolutionary expansion of the human neocortex reflects increased amplification of basal progenitors in the subventricular zone, producing more neurons during fetal corticogenesis. In this work, we analyze the transcriptomes of distinct progenitor subpopulations isolated by a cell polarity–based approach from developing mouse and human neocortex. We identify 56 genes preferentially expressed in human apical and basal radial glia that lack mouse orthologs. Among these, ARHGAP11B has the highest degree of radial glia–specific expression. ARHGAP11B arose from partial duplication of ARHGAP11A (which encodes a Rho guanosine triphosphatase–activating protein) on the human lineage after separation from the chimpanzee lineage. Expression of ARHGAP11B in embryonic mouse neocortex promotes basal progenitor generation and self-renewal and can increase cortical plate area and induce gyrification. Hence, ARHGAP11B may have contributed to evolutionary expansion of human neocortex.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Human cerebral organoids recapitulate gene expression programs of fetal neocortex development

J. Gray Camp; Farhath Badsha; Marta Florio; Sabina Kanton; Tobias Gerber; Michaela Wilsch-Bräuninger; Eric Lewitus; Alex M. Sykes; Wulf Hevers; Madeline A. Lancaster; Juergen A. Knoblich; R Lachmann; Svante Pääbo; Wieland B. Huttner; Barbara Treutlein

Significance We have used single-cell RNA sequencing to compare human cerebral organoids and fetal neocortex. We find that, with relatively few exceptions, cells in organoid cortex-like regions use genetic programs very similar to fetal tissue to generate a structured cerebral cortex. Our study is of interest, as it shows which genetic features underlying human cortical development can be accurately studied in organoid culture systems. This is important because although cerebral organoids have great promise for modeling human neurodevelopment, the extent to which organoids recapitulate neural progenitor proliferation and differentiation networks in vivo remained unclear. Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.


Development | 2012

Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development.

Marta Florio; Ketty Leto; Luca Muzio; Andrea Tinterri; Aurora Badaloni; Laura Croci; Paola Zordan; Valeria Barili; Ilaria Albieri; François Guillemot; Ferdinando Rossi; G. Giacomo Consalez

By serving as the sole output of the cerebellar cortex, integrating a myriad of afferent stimuli, Purkinje cells (PCs) constitute the principal neuron in cerebellar circuits. Several neurodegenerative cerebellar ataxias feature a selective cell-autonomous loss of PCs, warranting the development of regenerative strategies. To date, very little is known as to the regulatory cascades controlling PC development. During central nervous system development, the proneural gene neurogenin 2 (Neurog2) contributes to many distinct neuronal types by specifying their fate and/or dictating development of their morphological features. By analyzing a mouse knock-in line expressing Cre recombinase under the control of Neurog2 cis-acting sequences we show that, in the cerebellar primordium, Neurog2 is expressed by cycling progenitors cell-autonomously fated to become PCs, even when transplanted heterochronically. During cerebellar development, Neurog2 is expressed in G1 phase by progenitors poised to exit the cell cycle. We demonstrate that, in the absence of Neurog2, both cell-cycle progression and neuronal output are significantly affected, leading to an overall reduction of the mature cerebellar volume. Although PC fate identity is correctly specified, the maturation of their dendritic arbor is severely affected in the absence of Neurog2, as null PCs develop stunted and poorly branched dendrites, a defect evident from the early stages of dendritogenesis. Thus, Neurog2 represents a key regulator of PC development and maturation.


Current Opinion in Neurobiology | 2016

Neocortex expansion in development and evolution — from cell biology to single genes

Michaela Wilsch-Bräuninger; Marta Florio; Wieland B. Huttner

Neocortex expansion in development and evolution reflects an increased and prolonged activity of neural progenitor cells. Insight into key aspects of the underlying cell biology has recently been obtained. First, the restriction of apical progenitors to undergo mitosis at the ventricular surface is overcome by generation of basal progenitors, which are free to undergo mitosis at abventricular location, typically the subventricular zone. This process involves basolateral ciliogenesis, delamination from the apical adherens junction belt, and loss of apical cell polarity. Second, proliferative capacity of basal progenitors is supported by self-produced extracellular matrix constituents, which in turn promote growth factor signalling. Humans amplify these processes by characteristic alterations in expression of key regulatory genes (PAX6), and via human-specific genes (ARHGAP11B).


The EMBO Journal | 2017

Epigenome profiling and editing of neocortical progenitor cells during development

Mareike Albert; Nereo Kalebic; Marta Florio; Naharajan Lakshmanaperumal; Christiane Haffner; Holger Brandl; Ian Henry; Wieland B. Huttner

The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator Eomes. We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the Eomes locus in vivo, which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development.


Current Opinion in Neurobiology | 2017

Human-specific genomic signatures of neocortical expansion

Marta Florio; Víctor Borrell; Wieland B. Huttner

Neocortex evolutionary expansion is primarily due to increased proliferative capacity of neural progenitor cells during cortical development. Exploiting insights into the cell biology of cortical progenitors gained during the past two decades, recent studies uncovered a variety of gene expression differences that underlie differential cortical progenitor behavior. These comprise both, differences between cortical areas that likely provide a molecular basis for cortical folding, and differences across species thought to be responsible for increases in neocortex size. Human-specific signatures have been identified for gene regulatory elements, non-coding gene products, and protein-encoding genes, and have been functionally examined in in vivo as well as novel in vitro model systems.


Scientific Reports | 2016

Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells

Elena Taverna; Felipe Mora-Bermúdez; Paulina J. Strzyz; Marta Florio; Jaroslav Icha; Christiane Haffner; Caren Norden; Michaela Wilsch-Bräuninger; Wieland B. Huttner

Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change.


Science Advances | 2016

A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification

Marta Florio; Takashi Namba; Svante Pääbo; Michael Hiller; Wieland B. Huttner

Single nucleotide substitution played important role in evolutionary expansion of human neocortex. The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex.


eLife | 2018

Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex

Marta Florio; Michael Heide; Anneline Pinson; Holger Brandl; Mareike Albert; Sylke Winkler; Pauline Wimberger; Wieland B. Huttner; Michael Hiller

Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution.

Collaboration


Dive into the Marta Florio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mareike Albert

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge