Marta Galán-Díez
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marta Galán-Díez.
Cell Metabolism | 2016
Paula Mera; Kathrin Laue; Mathieu Ferron; Cyril Confavreux; Jianwen Wei; Marta Galán-Díez; Alain Lacampagne; Sarah J. Mitchell; Julie A. Mattison; Yun Chen; Justine Bacchetta; Pawel Szulc; Richard N. Kitsis; Rafael de Cabo; Richard A. Friedman; Christopher Torsitano; Timothy E. McGraw; Michelle A. Puchowicz; Irwin J. Kurland; Gerard Karsenty
Circulating levels of undercarboxylated and bioactive osteocalcin double during aerobic exercise at the time levels of insulin decrease. In contrast, circulating levels of osteocalcin plummet early during adulthood in mice, monkeys, and humans of both genders. Exploring these observations revealed that osteocalcin signaling in myofibers is necessary for adaptation to exercise by favoring uptake and catabolism of glucose and fatty acids, the main nutrients of myofibers. Osteocalcin signaling in myofibers also accounts for most of the exercise-induced release of interleukin-6, a myokine that promotes adaptation to exercise in part by driving the generation of bioactive osteocalcin. We further show thatxa0exogenous osteocalcin is sufficient to enhance the exercise capacity of young mice and to restore to 15-month-old mice the exercise capacity of 3-month-old mice. This study uncovers a bone-to-muscle feedforward endocrine axis that favors adaptation to exercise and can reverse the age-induced decline in exercise capacity.
Blood | 2014
Maria Krevvata; Barbara C. Silva; John S. Manavalan; Marta Galán-Díez; Aruna Kode; Brya G. Matthews; David Park; Chiyuan A. Zhang; Naomi Galili; Thomas L. Nickolas; David W. Dempster; William C. Dougall; Julie Teruya-Feldstein; Aris N. Economides; Ivo Kalajzic; Azra Raza; Ellin Berman; Siddhartha Mukherjee; Govind Bhagat; Stavroula Kousteni
The bone marrow niche is thought to act as a permissive microenvironment required for emergence or progression of hematologic cancers. We hypothesized that osteoblasts, components of the niche involved in hematopoietic stem cell (HSC) function, influence the fate of leukemic blasts. We show that osteoblast numbers decrease by 55% in myelodysplasia and acute myeloid leukemia patients. Further, genetic depletion of osteoblasts in mouse models of acute leukemia increased circulating blasts and tumor engraftment in the marrow and spleen leading to higher tumor burden and shorter survival. Myelopoiesis increased and was coupled with a reduction in B lymphopoiesis and compromised erythropoiesis, suggesting that hematopoietic lineage/progression was altered. Treatment of mice with acute myeloid or lymphoblastic leukemia with a pharmacologic inhibitor of the synthesis of duodenal serotonin, a hormone suppressing osteoblast numbers, inhibited loss of osteoblasts. Maintenance of the osteoblast pool restored normal marrow function, reduced tumor burden, and prolonged survival. Leukemia prevention was attributable to maintenance of osteoblast numbers because inhibition of serotonin receptors alone in leukemic blasts did not affect leukemia progression. These results suggest that osteoblasts play a fundamental role in propagating leukemia in the marrow and may be a therapeutic target to induce hostility of the niche to leukemia blasts.
Infection and Immunity | 2010
Marta Galán-Díez; David M. Arana; Diego Serrano-Gómez; Leonor Kremer; José María Casasnovas; Mara Ortega; Álvaro Cuesta-Domínguez; Angel L. Corbí; Jesús Pla; Elena Fernández-Ruiz
ABSTRACT Innate immunity to Candida albicans depends upon the recognition of molecular patterns on the fungal cell wall. However, the masking of major components such as β-glucan seems to be a mechanism that fungi have evolved to avoid immune cell recognition through the dectin-1 receptor. Although the role of C. albicans mitogen-activated protein kinase (MAPK) pathways as virulence determinants has been established previously with animal models, the mechanism involved in this behavior is largely unknown. In this study we demonstrate that a disruption of the C. albicans extracellular signal-regulated kinase (ERK)-like 1 (CEK1)-mediated MAPK pathway causes enhanced cell wall β-glucan exposure, triggering immune responses more efficiently than the wild type, as measured by dectin-1-mediated specific binding and human dendritic cell (hDC)- and macrophage-mediated phagocytosis, killing, and activation of intracellular signaling pathways. At the molecular level, the disruption of CEK1 resulted in altered spleen tyrosine kinase (Syk), Raf-1, and ERK1/2 activations together with IκB degradation on hDCs and increased dectin-1-dependent activator protein 1 (AP-1) activation on transfected cells. In addition, concurring with these altered pathways, we detected increased reactive oxygen species production and cytokine secretion. In conclusion, the CEK1-mediated MAPK pathway is involved in β-glucan exposure in a fungal pathogen, hence influencing dectin-1-dependent immune cell recognition, thus establishing this fungal intracellular signaling route as a promising novel therapeutic target.
PLOS ONE | 2012
Álvaro Cuesta-Domínguez; Mara Ortega; Cristina Ormazábal; Matilde Santos-Roncero; Marta Galán-Díez; Juan Luis Steegmann; Angela Figuera; Eva Arranz; José L. Vizmanos; Juan A. Bueren; Paula Río; Elena Fernández-Ruiz
Chromosomal translocations in tumors frequently produce fusion genes coding for chimeric proteins with a key role in oncogenesis. Recent reports described a BCR-JAK2 fusion gene in fatal chronic and acute myeloid leukemia, but the functional behavior of the chimeric protein remains uncharacterized. We used fluorescence in situ hybridization and reverse transcription polymerase chain reaction (RT-PCR) assays to describe a BCR-JAK2 fusion gene from a patient with acute lymphoblastic leukemia. The patient has been in complete remission for six years following treatment and autologous transplantation, and minimal residual disease was monitored by real-time RT-PCR. BCR-JAK2 codes for a protein containing the BCR oligomerization domain fused to the JAK2 tyrosine-kinase domain. In vitro analysis of transfected cells showed that BCR-JAK2 is located in the cytoplasm. Transduction of hematopoietic Ba/F3 cells with retroviral vectors carrying BCR-JAK2 induced IL-3-independent cell growth, constitutive activation of the chimeric protein as well as STAT5 phosphorylation and translocation to the nuclei, where Bcl-xL gene expression was elicited. Primary mouse progenitor cells transduced with BCR-JAK2 also showed increased proliferation and survival. Treatment with the JAK2 inhibitor TG101209 abrogated BCR-JAK2 and STAT5 phosphorylation, decreased Bcl-xL expression and triggered apoptosis of transformed Ba/F3 cells. Therefore, BCR-JAK2 is a novel tyrosine-kinase with transforming activity. It deregulates growth factor-dependent proliferation and cell survival, which can be abrogated by the TG101209 inhibitor. Moreover, transformed Ba/F3 cells developed tumors when injected subcutaneously into nude mice, thus proving the tumorigenic capacity of BCR-JAK2 in vivo. Together these findings suggest that adult and pediatric patients with BCR-ABL-negative leukemia and JAK2 overexpression may benefit from targeted therapies.
Journal of Clinical Immunology | 2013
Claudia Salazar-Aldrete; Marta Galán-Díez; Elena Fernández-Ruiz; Perla Niño-Moreno; Lizbeth Estrada-Capetillo; Carlos Abud-Mendoza; Esther Layseca-Espinosa; Lourdes Baranda; Roberto González-Amaro
The aim of this work was to study the expression and function of the innate immune receptor dectin-1 in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). We studied twenty-six patients with SLE not receiving immunosuppressive therapy, twenty-six patients with RA, and fifteen controls. We found that monocytes from SLE patients showed a diminished expression of dectin-1 compared to healthy controls, and an inverse correlation between percent of dectin-1+ cells and the disease activity score was detected. In addition, cells from SLE patients showed an abnormal calcium flux response induced by dectin-1 ligands as well as an enhanced release of IL-1β, IL-6 and TNF-α, but not IL-23, upon dectin-1 engagement. Monocytes from patients with RA also showed a diminished expression, and a defective function of dectin-1. Our data suggest that dectin-1 receptor defects could contribute to the pathogenesis of autoimmune inflammatory conditions.
Cell Metabolism | 2017
Paula Mera; Kathrin Laue; Mathieu Ferron; Cyril Confavreux; Jianwen Wei; Marta Galán-Díez; Alain Lacampagne; Sarah J. Mitchell; Julie A. Mattison; Yun Chen; Justine Bacchetta; Pawel Szulc; Richard N. Kitsis; Rafael de Cabo; Richard A. Friedman; Christopher Torsitano; Timothy E. McGraw; Michelle A. Puchowicz; Irwin J. Kurland; Gerard Karsenty
Paula Mera, Kathrin Laue, Mathieu Ferron, Cyril Confavreux, Jianwen Wei, Marta Galán-Dı́ez, Alain Lacampagne, Sarah J. Mitchell, Julie A. Mattison, Yun Chen, Justine Bacchetta, Pawel Szulc, Richard N. Kitsis, Rafael de Cabo, Richard A. Friedman, Christopher Torsitano, Timothy E. McGraw, Michelle Puchowicz, Irwin Kurland, and Gerard Karsenty* *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cmet.2016.12.003
Biochimica et Biophysica Acta | 2016
Marta Galán-Díez; Adiba Isa; Marco Ponzetti; Morten Frost Munk Nielsen; Moustapha Kassem; Stavroula Kousteni
Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Current Molecular Biology Reports | 2017
Marta Galán-Díez; Stavroula Kousteni
Purpose of ReviewThis review focuses on evidence highlighting the bidirectional crosstalk between the hematopoietic stem cell (HSC) and their surrounding stromal cells, with a particular emphasis on cells of the osteoblast lineage. The role and molecular functions of osteoblasts in normal hematopoiesis and in myeloid hematological malignancies is discussed.Recent FindingsCells of the osteoblast lineage have emerged as potent regulators of HSC expansion that regulate their recruitment and, depending on their stage of differentiation, their activity, proliferation, and differentiation along the lymphoid, myeloid, and erythroid lineages. In addition, mutations in mature osteoblasts or their progenitors induce myeloid malignancies. Conversely, signals from myelodysplastic cells can remodel the osteoblastic niche to favor self-perpetuation.SummaryUnderstanding cellular crosstalk between osteoblastic cells and HSCs in the bone marrow microenvironment is of fundamental importance for developing therapies against benign and malignant hematological diseases.
Cold Spring Harbor Perspectives in Medicine | 2018
Marta Galán-Díez; Álvaro Cuesta-Domínguez; Stavroula Kousteni
Hematopoietic stem cells (HSCs) interact dynamically with an intricate network of cells in the bone marrow (BM) microenvironment or niche. These interactions provide instructive cues that influence the production and lineage determination of different types of blood cells and maintenance of HSC quiescence. They also contribute to hematopoietic deregulation and hematological myeloid malignancies. Alterations in the BM niche are commonly observed in myeloid malignancies and contribute to the aberrant function of myelodysplastic and leukemia-initiating stem cells. In this work, we review how different components of the BM niche affect normal hematopoiesis, the molecular signals that govern this interaction, and how genetic changes in stromal cells or alterations in remodeled malignant BM niches contribute to myeloid malignancies. Understanding the intricacies between normal and malignant niches and their modulation may provide insights into developing novel therapeutics for blood disorders.
Genes & Development | 2018
Marta Galán-Díez; Stavroula Kousteni
Hematopoietic stem cells (HSCs) reside and are maintained in specialized microenvironments within the bone marrow known as niches, which are comprised of various cell types. Among them, leptin receptor (LepR)-expressing CXC chemokine ligand 12 (CXCL12)-abundant reticular (CAR) cells are known to create a niche for HSCs and at the same time to give rise to osteoblasts. These two functions of CAR/LepR+ cells appear to be tightly but inversely regulated to ensure adequate physical space for HSCs. However, how osteogenesis is prevented in CAR cells to maintain spaces available for HSCs and hematopoiesis remains unclear. In this issue of Genes & Development, Seike and colleagues (pp. 359-372) report that the transcription factor early B-cell factor (Ebf3) is preferentially expressed by CAR/LepR+ cells and inhibits CAR cell differentiation into osteoblasts while at the same time maintaining self-renewal of CAR/LepR+ cells. Using conditional knockout and retroviral systems, the investigators show that loss of Ebf3 in CAR cells impairs HSC numbers and leads to osteosclerosis. This study provides novel insights into transcriptional requirements for CAR cell bone formation by identifying Ebf3 as a niche factor secreted from CAR/Lepr+ cells that regulates the interplay between osteogenesis and hematopoiesis.