Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stavroula Kousteni is active.

Publication


Featured researches published by Stavroula Kousteni.


Cell | 2001

Nongenotropic, Sex-Nonspecific Signaling through the Estrogen or Androgen Receptors: Dissociation from Transcriptional Activity

Stavroula Kousteni; Teresita Bellido; Lilian I. Plotkin; Charles A. O'Brien; D.L. Bodenner; Li Han; K. Han; G.B. DiGregorio; John A. Katzenellenbogen; B.S. Katzenellenbogen; Paula K. Roberson; Robert S. Weinstein; Robert L. Jilka; Stavros C. Manolagas

The relationship of the classical receptors and their transcriptional activity to nongenotropic effects of steroid hormones is unknown. We demonstrate herein a novel paradigm of sex steroid action on osteoblasts, osteocytes, embryonic fibroblasts, and HeLa cells involving activation of a Src/Shc/ERK signaling pathway and attenuating apoptosis. This action is mediated by the ligand binding domain and eliminated by nuclear targeting of the receptor protein; ERalpha, ERbeta, or AR can transmit it with similar efficiency irrespective of whether the ligand is an estrogen or an androgen. This antiapoptotic action can be dissociated from the transcriptional activity of the receptor with synthetic ligands, providing proof of principle for the development of function-specific-as opposed to tissue-selective-and gender-neutral pharmacotherapeutics.


Journal of Biological Chemistry | 2007

Skeletal Involution by Age-associated Oxidative Stress and Its Acceleration by Loss of Sex Steroids

Maria Almeida; Li Han; Marta Martin-Millan; Lilian I. Plotkin; Scott A. Stewart; Paula K. Roberson; Stavroula Kousteni; Charles A. O'Brien; Teresita Bellido; A. Michael Parfitt; Robert S. Weinstein; Robert L. Jilka; Stavros C. Manolagas

Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66shc, two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro.We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress.


Journal of Biological Chemistry | 2005

Wnt Proteins Prevent Apoptosis of Both Uncommitted Osteoblast Progenitors and Differentiated Osteoblasts by β-Catenin-dependent and -independent Signaling Cascades Involving Src/ERK and Phosphatidylinositol 3-Kinase/AKT

Maria Almeida; Li Han; Teresita Bellido; Stavros C. Manolagas; Stavroula Kousteni

Genetic studies in humans and mice have revealed an important role of the Wnt signaling pathway in the regulation of bone mass, resulting from potent effects on the control of osteoblast progenitor proliferation, commitment, differentiation, and perhaps osteoblast apoptosis. To establish the linkage between Wnts and osteoblast survival and to elucidate the molecular pathways that link the two, we have utilized three cell models: the uncommitted bipotential C2C12 cells, the pre-osteoblastic cell line MC3T3-E1, and bone marrow-derived OB-6 osteoblasts. Serum withdrawal-induced apoptosis was prevented by the canonical Wnts (Wnt3a and Wnt1) and the noncanonical Wnt5a in all cell types. Wnt3a induced LRP5-independent transient phosphorylation and nuclear accumulation of ERKs and phosphorylation of Src and Akt. The anti-apoptotic effect of Wnt3a was abrogated by inhibitors of canonical Wnt signaling, as well as by inhibitors of MEK, Src, phosphatidylinositol 3-kinase (PI3K), or Akt kinases, or by the addition of cycloheximide to the culture medium. Wnt3a-induced phosphorylation of GSK-3β and downstream activation of β-catenin-mediated transcription required ERK, PI3K, and Akt signaling. Wnt3a increased the expression of the anti-apoptotic protein Bcl-2 in an ERK-dependent manner. β-Catenin-mediated transcription was permissive for the anti-apoptotic actions of Wnt1 and Wnt3a but was dispensable for the anti-apoptotic action of Wnt5a. However, Src, ERKs, PI3K, and Akt kinases were required for the anti-apoptotic effects of Wnt5a. These results demonstrate for the first time that Wnt proteins, irrespective of their ability to stimulate canonical Wnt signaling, prolong the survival of osteoblasts and uncommitted osteoblast progenitors via activation of the Src/ERK and PI3K/Akt signaling cascades.


Journal of Oral and Maxillofacial Surgery | 2008

Inhibition of Oral Mucosal Cell Wound Healing by Bisphosphonates

Regina Landesberg; Matthew Cozin; Serge Cremers; Victoria L. Woo; Stavroula Kousteni; Satrajit Sinha; Lee Ann Garrett-Sinha; Srikala Raghavan

PURPOSE Bisphosphonates (BPs) are a widely used class of drugs that are effective in the treatment and prevention of osteoporosis, hypercalcemia of malignancy, and bone metastases associated with multiple myeloma, breast cancer, and other solid tumors. In the past several years there have been numerous reports describing the occurrence of osteonecrosis of the jaws (ONJ) associated with these drugs. Whether the ONJ lesion initiates in the oral mucosa or derives from the underlying bone is not well understood. In this report we describe the effect of pamidronate, a second-generation BP, on oral mucosal cells. MATERIALS AND METHODS Murine oral keratinocytes were isolated and exposed to pamidronate at a range of clinically relevant doses. Cellular proliferation was measured using a MTS/PMS reagent-based kit and wound healing was examined with a scratch assay. To determine whether oral keratinocytes undergo apoptosis following exposure to pamidronate, TUNEL, caspase-3, and DAPI apoptosis assays were performed. RESULTS We show that BP pretreatment of oral mucosal cells inhibits proliferation and wound healing at clinically relevant doses, and that this inhibition is not due to cellular apoptosis. CONCLUSIONS To our knowledge this is the first report investigating the effect of nitrogen-containing BPs on oral mucosal cells. This study suggests that BPs inhibit oral keratinocyte wound healing which may play a significant role in the initiation of ONJ.


Nature | 2014

Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts

Aruna Kode; John S. Manavalan; Ioanna Mosialou; Govind Bhagat; Chozha V. Rathinam; Na Luo; Hossein Khiabanian; Albert Lee; Vundavalli V. Murty; Richard A. Friedman; Andrea Brum; David Park; Naomi Galili; Siddhartha Mukherjee; Julie Teruya-Feldstein; Azra Raza; Raul Rabadan; Ellin Berman; Stavroula Kousteni

Cells of the osteoblast lineage affect the homing and the number of long-term repopulating haematopoietic stem cells, haematopoietic stem cell mobilization and lineage determination and B cell lymphopoiesis. Osteoblasts were recently implicated in pre-leukaemic conditions in mice. However, a single genetic change in osteoblasts that can induce leukaemogenesis has not been shown. Here we show that an activating mutation of β-catenin in mouse osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukaemia with common chromosomal aberrations and cell autonomous progression. Activated β-catenin stimulates expression of the Notch ligand jagged 1 in osteoblasts. Subsequent activation of Notch signalling in haematopoietic stem cell progenitors induces the malignant changes. Genetic or pharmacological inhibition of Notch signalling ameliorates acute myeloid leukaemia and demonstrates the pathogenic role of the Notch pathway. In 38% of patients with myelodysplastic syndromes or acute myeloid leukaemia, increased β-catenin signalling and nuclear accumulation was identified in osteoblasts and these patients showed increased Notch signalling in haematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce acute myeloid leukaemia, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to acute myeloid leukaemia.


Journal of Clinical Investigation | 2003

Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids

Stavroula Kousteni; Li Han; Jin Ran Chen; Maria Almeida; Lilian I. Plotkin; Teresita Bellido; Stavros C. Manolagas

It has been found that 4-estren-3alpha,17beta-diol, a synthetic ligand for the estrogen receptor (ER) or androgen receptor (AR), which does not affect classical transcription, reverses bone loss in ovariectomized females or orchidectomized males without affecting the uterus or seminal vesicles, demonstrating that the classical genotropic actions of sex steroid receptors are dispensable for their bone-protective effects, but indispensable for their effects on reproductive organs. We have now investigated the mechanism of action of this compound. We report that, identically to 17beta-estradiol or dihydrotestosterone, but differently from raloxifene, estren alters the activity of Elk-1, CCAAT enhancer binding protein-beta (C/EBPbeta), and cyclic adenosine monophosphate-response element binding protein (CREB), or c-Jun/c-Fos by an extranuclear action of the ER or AR, resulting in activation of the Src/Shc/ERK pathway or downregulation of JNK, respectively. All of these effects are non-sex specific, require only the ligand-binding domain of the receptor, and are indispensable for the antiapoptotic action of these ligands on osteoblastic and HeLa cells. Moreover, administration of 17beta-estradiol or 4-estren-3alpha,17beta-diol to ovariectomized mice induces phosphorylation of ERKs, Elk-1, and C/EBPbeta, downregulates c-Jun, and upregulates the expression of egr-1, an ERK/SRE target gene. Kinase-initiated regulation of commonly used transcription factors offers a molecular explanation for the profound skeletal effects of sex steroid receptor ligands, including synthetic ones that are devoid of classical transcriptional activity.


Journal of Biological Chemistry | 2005

Bisphosphonates and Estrogens Inhibit Osteocyte Apoptosis via Distinct Molecular Mechanisms Downstream of Extracellular Signal-regulated Kinase Activation

Lilian I. Plotkin; J. Ignacio Aguirre; Stavroula Kousteni; Stavros C. Manolagas; Teresita Bellido

Both estrogens and bisphosphonates attenuate osteocyte apoptosis by activating the extracellular signal-regulated kinases (ERKs). However, whereas estrogens activate ERKs via an extranuclear function of the estrogen receptor, bisphosphonates do so by opening connexin 43 hemichannels. Here, we demonstrated that the signaling events downstream of ERKs induced by these two stimuli are also distinct. Inhibition of osteocyte apoptosis by estrogens requires nuclear accumulation of ERKs and activation of downstream transcription factors. On the other hand, anti-apoptosis induced by bisphosphonates requires neither transcription nor ERK-dependent transcription factors. Instead, the effect of bisphosphonates is abolished when ERKs are restricted to the nucleus by blocking CRM1/exportin1-mediated nuclear protein export or by expressing nuclear-anchored ERKs, but it is unaffected in cells expressing cytoplasmic-anchored ERKs. Connexin 43/ERK-mediated anti-apoptosis induced by bisphosphonates requires the kinase activity of the cytoplasmic target of ERKs, p90RSK, which in turn phosphorylates the pro-apoptotic protein BAD and C/EBPβ. Phosphorylation of BAD renders it inactive, whereas phosphorylation of C/EBPβ leads to binding of pro-caspases, thus inhibiting apoptosis independently of the transcriptional activity of this transcription factor. Consistent with the evidence that estrogens and bisphosphonates phosphorylate diverse targets of ERKs, probably resulting from activation of spatially distinct pools of these kinases, the two agents had additive effects on osteocyte survival.


Journal of Clinical Investigation | 2010

FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice

Marie Therese Rached; Aruna Kode; Barbara C. Silva; Dae Young Jung; Susan Gray; Helena Ong; Ji Hye Paik; Ronald A. DePinho; Jason K. Kim; Gerard Karsenty; Stavroula Kousteni

Osteoblasts have recently been found to play a role in regulating glucose metabolism through secretion of osteocalcin. It is unknown, however, how this osteoblast function is regulated transcriptionally. As FoxO1 is a forkhead family transcription factor known to regulate several key aspects of glucose homeostasis, we investigated whether its expression in osteoblasts may contribute to its metabolic functions. Here we show that mice lacking Foxo1 only in osteoblasts had increased pancreatic beta cell proliferation, insulin secretion, and insulin sensitivity. The ability of osteoblast-specific FoxO1 deficiency to affect metabolic homeostasis was due to increased osteocalcin expression and decreased expression of Esp, a gene that encodes a protein responsible for decreasing the bioactivity of osteocalcin. These results indicate that FoxO1 expression in osteoblasts contributes to FoxO1 control of glucose homeostasis and identify FoxO1 as a key modulator of the ability of the skeleton to function as an endocrine organ regulating glucose metabolism.


Cell Metabolism | 2010

FoxO1 Is a Positive Regulator of Bone Formation by Favoring Protein Synthesis and Resistance to Oxidative Stress in Osteoblasts

Marie Therese Rached; Aruna Kode; Lili Xu; Yoshihiro Yoshikawa; Ji Hye Paik; Ronald A. DePinho; Stavroula Kousteni

Osteoporosis, a disease of low bone mass, is associated with decreased osteoblast numbers and increased levels of oxidative stress within osteoblasts. Since transcription factors of the FoxO family confer stress resistance, we investigated their potential impact on skeletal integrity. Here we employ cell-specific deletion and molecular analyses to show that, among the three FoxO proteins, only FoxO1 is required for proliferation and redox balance in osteoblasts and thereby controls bone formation. FoxO1 regulation of osteoblast proliferation occurs through its interaction with ATF4, a transcription factor regulating amino acid import, as well as through its regulation of a stress-dependent pathway influencing p53 signaling. Accordingly, decreasing oxidative stress levels or increasing protein intake normalizes bone formation and bone mass in mice lacking FoxO1 specifically in osteoblasts. These results identify FoxO1 as a crucial regulator of osteoblast physiology and provide a direct mechanistic link between oxidative stress and the regulation of bone remodeling.


Annals of the New York Academy of Sciences | 2011

Potential pathophysiological mechanisms in osteonecrosis of the jaw

Regina Landesberg; Victoria L. Woo; Serge Cremers; Matthew Cozin; Darja Marolt; Gordana Vunjak-Novakovic; Stavroula Kousteni; Srikala Raghavan

Bisphosphonates are used in the treatment of hypercalcemia of malignancy, skeletal complications associated with metastastic bone disease, Pagets disease, and osteoporosis. Osteonecrosis of the jaw (ONJ) is a recently described clinical condition that has been associated with the use of nitrogen‐containing bisphosphonates. Reports describing this entity first appeared in the literature in 2003. While there have been significant numbers of case reports and a limited number of retrospective and prospective studies examining risk factors associated with ONJ, the pathophysiology of this condition remains elusive. In this review, we explore proposed mechanisms underlying ONJ development and identify potential areas for future investigation.

Collaboration


Dive into the Stavroula Kousteni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stavros C. Manolagas

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara C. Silva

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Ellin Berman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Han

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Govind Bhagat

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lilian I. Plotkin

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge