Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Pallotto is active.

Publication


Featured researches published by Marta Pallotto.


Current Biology | 2010

A Postsynaptic Signaling Pathway that May Account for the Cognitive Defect Due to IL1RAPL1 Mutation

Alice Pavlowsky; Antonella Gianfelice; Marta Pallotto; Alice Zanchi; Hugo Vara; Malik Khelfaoui; Pamela Valnegri; Xavier Rezai; Silvia Bassani; Dario Brambilla; Jiri Kumpost; Jaroslav Blahos; Michel J. Roux; Yann Humeau; Jamel Chelly; Maria Passafaro; Maurizio Giustetto; Pierre Billuart; Carlo Sala

BACKGROUND Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) gene mutations are associated with cognitive impairment ranging from nonsyndromic X-linked mental retardation to autism. IL1RAPL1 belongs to a novel family of Toll/IL-1 receptors, whose expression in the brain is upregulated by neuronal activity. Currently, very little is known about the function of this protein. We previously showed that IL1RAPL1 interacts with the neuronal calcium sensor NCS-1 and that it regulates voltage-gated calcium channel activity in PC12 cells. RESULTS Here we show that IL1RAPL1 is present in dendritic spine where it interacts with PSD-95, a major component of excitatory postsynaptic compartment. Using gain- and loss-of-function experiments in neurons, we demonstrated that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling c-Jun terminal kinase (JNK) activity and PSD-95 phosphorylation. Mice carrying a null mutation of the mouse Il1rapl1 gene show a reduction of both dendritic spine density and excitatory synapses in the CA1 region of the hippocampus. These structural abnormalities are associated with specific deficits in hippocampal long-term synaptic plasticity. CONCLUSION The interaction of IL1RAPL1 with PSD-95 discloses a novel pathophysiological mechanism of cognitive impairment associated with alterations of the JNK pathway leading to a mislocalization of PSD-95 and abnormal synaptic organization and function.


The Journal of Neuroscience | 2009

Early Synapse Formation in Developing Interneurons of the Adult Olfactory Bulb

Patrizia Panzanelli; Cedric Bardy; Antoine Nissant; Marta Pallotto; Marco Sassoè-Pognetto; Pierre-Marie Lledo; Jean-Marc Fritschy

New olfactory bulb granule cells (GCs) are GABAergic interneurons continuously arising from neuronal progenitors and integrating into preexisting bulbar circuits. They receive both GABAergic and glutamatergic synaptic inputs from olfactory bulb intrinsic neurons and centrifugal afferents. Here, we investigated the spatiotemporal dynamic of newborn GC synaptogenesis in adult mouse olfactory bulb. First, we established that GABAergic synapses onto mature GC dendrites contain the GABAA receptor α2 subunit along with the postsynaptic scaffolding protein gephyrin. Next, we characterized morphologically and electrophysiologically the development of GABAergic and glutamatergic inputs onto newborn GCs labeled with eGFP (enhanced green fluorescent protein) using lentiviral vectors. Already when reaching the GC layer (GCL), at 3 d post-vector injection (dpi), newborn GCs exhibited tiny voltage-dependent sodium currents and received functional GABAergic and glutamatergic synapses, recognized immunohistochemically by apposition of specific presynaptic and postsynaptic markers. Thereafter, GABAergic and glutamatergic synaptic contacts increased differentially in the GCL, and at 7 dpi, PSD-95 clusters outnumbered gephyrin clusters. Thus, the weight of GABAergic input was predominant at early stages of GC maturation, but not later. Newborn GC dendrites first reached the external plexiform layer at 4 dpi, where they received functional GABAergic contacts at 5 dpi. Reciprocal synapses initially were formed on GC dendritic shafts, where they might contribute to spine formation. Their presence was confirmed ultrastructurally at 7 dpi. Together, our findings unravel rapid synaptic integration of newborn GCs in adult mouse olfactory bulb, with GABAergic and glutamatergic influences being established proximally before formation of output synapses by apical GC dendrites onto mitral/tufted cells.


Frontiers in Cellular Neuroscience | 2014

Regulation of adult neurogenesis by GABAergic transmission: signaling beyond GABAA-receptors

Marta Pallotto; Francine Deprez

In the adult mammalian brain, neurogenesis occurs in the olfactory bulb (OB) and in the dentate gyrus (DG) of the hippocampus. Several studies have shown that multiple stages of neurogenesis are regulated by GABAergic transmission with precise spatio-temporal selectivity, and involving mechanisms common to both systems or specific only to one. In the subgranular zone (SGZ) of the DG, GABA neurotransmitter, released by a specific population of interneurons, regulates stem cell quiescence and neuronal cell fate decisions. Similarly, in the subventricular zone (SVZ), OB neuroblast production is modulated by ambient GABA. Ambient GABA, acting on extrasynaptic GABAA receptors (GABAAR), is also crucial for proper adult-born granule cell (GC) maturation and synaptic integration in the OB as well as in the DG. Throughout adult-born neuron development, various GABA receptors and receptor subunits play specific roles. Previous work has demonstrated that adult-born GCs in both the OB and the DG show a time window of increased plasticity in which adult-born cells are more prone to modification by external stimuli. One mechanism that controls this “critical period” is GABAergic modulation. Indeed, depleting the main phasic GABAergic inputs in adult-born neurons results in dramatic effects, such as reduction of spine density and dendritic branching in adult-born OB GCs. In this review, we systematically compare the role of GABAergic transmission in the regulation of adult neurogenesis between the OB and the hippocampus, focusing on the role of GABA in modulating plasticity and critical periods of adult-born neuron development. Finally, we discuss signaling pathways that might mediate some of the deficits observed upon targeted deletion of postsynaptic GABAARs in adult-born neurons.


The Journal of Neuroscience | 2012

Early formation of GABAergic synapses governs the development of adult-born neurons in the olfactory bulb.

Marta Pallotto; Antoine Nissant; Jean-Marc Fritschy; Uwe Rudolph; Marco Sassoè-Pognetto; Patrizia Panzanelli; Pierre-Marie Lledo

In mammals, olfactory bulb granule cells (GCs) are generated throughout life in the subventricular zone. GABAergic inputs onto newborn neurons likely regulate their maturation, but the details of this process remain still elusive. Here, we investigated the differentiation, synaptic integration, and survival of adult-born GCs when their afferent GABAergic inputs are challenged by conditional gene targeting. Migrating GC precursors were targeted with Cre–eGFP-expressing lentiviral vectors in mice with a floxed gene encoding the GABAA receptor α2-subunit (i.e., Gabra2). Ablation of the α2-subunit did not affect GC survival but dramatically delayed their maturation. We found a reduction in postsynaptic α2-subunit and gephyrin clusters accompanied by a decrease in the frequency and amplitude of GABAergic postsynaptic currents beginning ∼14 d post-injection (dpi). In addition, mutant cells exhibited altered dendritic branching and spine density. Spine loss appeared with mislocation of glutamatergic synapses on dendritic shafts and a reduction of spontaneous glutamatergic postsynaptic currents, underscoring the relevance of afferent GABAergic transmission for a proper synaptic integration of newborn GCs. To test the role of GABAergic signaling during much early stages of GC maturation, we used a genetic strategy to selectively inactivate Gabra2 in precursor cells of the subventricular zone. In these mice, labeling of newborn GCs with eGFP lentiviruses revealed similar morphological alterations as seen on delayed Gabra2 inactivation in migrating neuroblasts, with reduced dendritic branching and spine density at 7 dpi. Collectively, these results emphasize the critical role of GABAergic synaptic signaling for structural maturation of adult-born GCs and formation of glutamatergic synapses.


The EMBO Journal | 2012

Cholesterol loss during glutamate-mediated excitotoxicity

Alejandro Omar Sodero; Joris Vriens; Debapriya Ghosh; David Stegner; Anna Brachet; Marta Pallotto; Marco Sassoè-Pognetto; Jos F. Brouwers; J. Bernd Helms; Bernhard Nieswandt; Thomas Voets; Carlos G. Dotti

The deregulation of brain cholesterol metabolism is typical in acute neuronal injury (such as stroke, brain trauma and epileptic seizures) and chronic neurodegenerative diseases (Alzheimers disease). Since both conditions are characterized by excessive stimulation of glutamate receptors, we have here investigated to which extent excitatory neurotransmission plays a role in brain cholesterol homeostasis. We show that a short (30 min) stimulation of glutamatergic neurotransmission induces a small but significant loss of membrane cholesterol, which is paralleled by release to the extracellular milieu of the metabolite 24S‐hydroxycholesterol. Consistent with a cause–effect relationship, knockdown of the enzyme cholesterol 24‐hydroxylase (CYP46A1) prevented glutamate‐mediated cholesterol loss. Functionally, the loss of cholesterol modulates the magnitude of the depolarization‐evoked calcium response. Mechanistically, glutamate‐induced cholesterol loss requires high levels of intracellular Ca2+, a functional stromal interaction molecule 2 (STIM2) and mobilization of CYP46A1 towards the plasma membrane. This study underscores the key role of excitatory neurotransmission in the control of membrane lipid composition, and consequently in neuronal membrane organization and function.


European Journal of Neuroscience | 2011

Integration and maturation of newborn neurons in the adult olfactory bulb – from synapses to function

Antoine Nissant; Marta Pallotto

In adult mammals, thousands of new neurons integrate in the olfactory bulb (OB) each day. This process of adult neurogenesis has received a great deal of scientific attention aimed at understanding how mature neural networks withstand neuronal replacement, and medical interest to explore the promise that these cells may be manipulated for brain repair therapies. In the present review, we focus on the mechanisms and consequences of the functional integration of newborn interneurons in the OB network. We first describe the steps of synaptic integration and functional maturation of adult‐born interneurons in the OB. We then examine the physiological control of cell maturation and survival. Finally, we explore the potential impact of adult neurogenesis on the function of the OB.


eLife | 2015

Extracellular space preservation aids the connectomic analysis of neural circuits

Marta Pallotto; Paul V. Watkins; Boma Fubara; Joshua H. Singer; Kevin L. Briggman

Dense connectomic mapping of neuronal circuits is limited by the time and effort required to analyze 3D electron microscopy (EM) datasets. Algorithms designed to automate image segmentation suffer from substantial error rates and require significant manual error correction. Any improvement in segmentation error rates would therefore directly reduce the time required to analyze 3D EM data. We explored preserving extracellular space (ECS) during chemical tissue fixation to improve the ability to segment neurites and to identify synaptic contacts. ECS preserved tissue is easier to segment using machine learning algorithms, leading to significantly reduced error rates. In addition, we observed that electrical synapses are readily identified in ECS preserved tissue. Finally, we determined that antibodies penetrate deep into ECS preserved tissue with only minimal permeabilization, thereby enabling correlated light microscopy (LM) and EM studies. We conclude that preservation of ECS benefits multiple aspects of the connectomic analysis of neural circuits. DOI: http://dx.doi.org/10.7554/eLife.08206.001


Communicative & Integrative Biology | 2010

Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions.

Alice Pavlowsky; Alice Zanchi; Marta Pallotto; Maurizio Giustetto; Jamel Chelly; Carlo Sala; Pierre Billuart

Interleukin-1-Receptor Accessory Protein Like 1 (IL1RAPL1) gene mutations are associated to cognitive impairment ranging from non-syndromic X-linked mental retardation to autism. Functionally IL1RAPL1 belongs to a novel family of Toll/ IL-1 Receptors, but its ligand is unknown. In a recent study, we have shown that IL1RAPL1 is present in dendritic spine where it interacts with PSD-95, a major scaffold protein of excitatory post-synaptic density. We demonstrated that IL1RAPL1 regulates the synaptic localization of PSD-95 by controlling JNK (c-Jun terminal Kinase) activity and PSD-95 phosphorylation. Loss of IL1RAPL1 in mouse not only led to a reduction of excitatory synapses but also to specific deficits in hippocampal long-term synaptic plasticity. Here we report that activation of JNK pathway in neurons by Interleukin-1 (IL-1) is mediated by IL1RAPL1. The interaction of IL1RAPL1 with PSD-95 discloses a novel pathophysiological mechanism underlying cognitive impairment associated with alterations of the JNK pathway in response to IL-1 and leading to the mis-localization of PSD-95, that subsequently result in abnormal synaptic organization and function.


Neural Systems & Circuits | 2011

Dynamic development of the first synapse impinging on adult-born neurons in the olfactory bulb circuit

Hiroyuki Katagiri; Marta Pallotto; Antoine Nissant; Kerren Murray; Marco Sassoè-Pognetto; Pierre-Marie Lledo

The olfactory bulb (OB) receives and integrates newborn interneurons throughout life. This process is important for the proper functioning of the OB circuit and consequently, for the sense of smell. Although we know how these new interneurons are produced, the way in which they integrate into the pre-existing ongoing circuits remains poorly documented. Bearing in mind that glutamatergic inputs onto local OB interneurons are crucial for adjusting the level of bulbar inhibition, it is important to characterize when and how these inputs from excitatory synapses develop on newborn OB interneurons. We studied early synaptic events that lead to the formation and maturation of the first glutamatergic synapses on adult-born granule cells (GCs), the most abundant subtype of OB interneuron. Patch-clamp recordings and electron microscopy (EM) analysis were performed on adult-born interneurons shortly after their arrival in the adult OB circuits. We found that both the ratio of N-methyl-D-aspartate receptor (NMDAR) to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and the number of functional release sites at proximal inputs reached a maximum during the critical period for the sensory-dependent survival of newborn cells, well before the completion of dendritic arborization. EM analysis showed an accompanying change in postsynaptic density shape during the same period of time. Interestingly, the latter morphological changes disappeared in more mature newly-formed neurons, when the NMDAR to AMPAR ratio had decreased and functional presynaptic terminals expressed only single release sites. Together, these findings show that the first glutamatergic inputs to adult-generated OB interneurons undergo a unique sequence of maturation stages.


Frontiers in Neuroscience | 2010

What Happens to Olfaction without Adult Neurogenesis

Cedric Bardy; Marta Pallotto

Constitutive neurogenesis clearly occurs within the adult central nervous system of almost all mammals. This process generates new neurons in at least two areas of the brain: the olfactory bulb (OB) and the dentate gyrus (DG) of the hippocampus. However, it remains unknown why new neurons specifically populate those two neural structures rather than other areas. In empirical experiments, adult neurogenesis was impaired and the consequences of this impairment for the neural circuitry and behavior of animals were investigated with a view to determining the role of new neurons in the adult brain. In the December issue of the Journal of Neuroscience, Breton-Provencher et al. addressed this issue, by using drugs to establish a transient blockade of adult neurogenesis and combining several techniques to evaluate the consequences of this blockade for OB circuits and particular types of behavior. Here, we summarize and discuss some of their findings in light of other recently published data.

Collaboration


Dive into the Marta Pallotto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoine Nissant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamel Chelly

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Pierre Billuart

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge