Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Szyszka is active.

Publication


Featured researches published by Marta Szyszka.


Peptides | 2010

Expression of the spexin gene in the rat adrenal gland and evidences suggesting that spexin inhibits adrenocortical cell proliferation.

Marcin Rucinski; Andrea Porzionato; Agnieszka Ziolkowska; Marta Szyszka; Veronica Macchi; Raffaele De Caro; Ludwik K. Malendowicz

Spexin (SPX, also called NPQ) is a recently identified, highly conserved peptide which is processed and secreted. We analysed the SPX gene and its protein product in the rat adrenal gland to ascertain whether SPX is involved in the regulation of corticosteroid secretion of and growth of adrenocortical cells. In adult rat adrenal glands the highest levels of SPX mRNA were present in the glomerulosa (ZG) and fasciculate/reticularis (ZF/R) zones. High SPX gene expression levels were found in freshly isolated adult rat ZG and ZF/R cells. In cultured adrenocortical cells the levels of SPX mRNA were lower than in freshly isolated cells. SPX mRNA expression levels were found to be 2-3 times higher during days 90-540 of postnatal development than found during days 2-45. Prolonged ACTH administration lowered and dexamethasone increased adrenal SPX mRNA levels in vivo. Adrenal enucleation produced a significant linear increase in SPX mRNA levels, with the highest value occurring at day 8 after surgery, with control values taken on day 30 after enucleation. Immunohistochemistry revealed SPX-like immunoreactivity in the entire cortex of the adult male rat and in enucleation-induced regenerating cortex. A concentration of 10-6M SPX peptide stimulated basal aldosterone secretion by freshly isolated ZG. In prolonged exposure of adrenocortical cell primary cultures to SPX (10-6M) resulted in a small increase in corticosterone secretion and a notable decrease in BrdU incorporation. The results suggest the direct involvement of SPX in the regulation of adrenocortical cell proliferation; however, the mechanism of action remains unknown.


Urologia Internationalis | 2009

Elevated Blood Active Ghrelin and Unaltered Total Ghrelin and Obestatin Concentrations in Prostate Carcinoma

Witold Malendowicz; Agnieszka Ziolkowska; Marta Szyszka; Zbigniew Kwias

Purpose: Ghrelin and its functional receptor are highly expressed in prostate cancer (PC) and ghrelin may activate proliferation of PC cell lines. This study was therefore designed to characterize the association between serum acylated and total ghrelin, and obestatin levels in patients with benign prostate hyperplasia (BPH) and PC. Methods: Blood serum concentrations of active and total ghrelin and obestatin were estimated by EIA methods. Results: Serum level of active ghrelin in PC was significantly higher compared to control and BPH groups. On the other hand, concentrations of total ghrelin and of obestatin did not differ between studied groups of patients. In the control group the ratio of active to total ghrelin concentrations amounted to 0.16, and it was similar in BPH (0.14), while it was notably elevated in PC (0.42). Also the ratio of active ghrelin to obestatin concentrations was higher in the group with PC than in the control and BPH groups. In all studied groups, the ratio of total circulating ghrelin to obestatin was similar. Conclusions: Obtained results suggest the link between elevated blood active ghrelin and PC, and we cannot exclude that elevated circulating active ghrelin may affect growth of malignant prostatic tissues.


Peptides | 2010

Adiponectin and adiponectin receptor system in the rat adrenal gland: Ontogenetic and physiologic regulation, and its involvement in regulating adrenocortical growth and steroidogenesis

Lukasz Paschke; Tomasz Zemleduch; Marcin Rucinski; Agnieszka Ziolkowska; Marta Szyszka; Ludwik K. Malendowicz

Adiponectin (ADN) is a regulatory peptide secreted mostly by adipose tissue and acting via two receptors: AdipoR1 and AdipoR2. Our aim was to investigate expression of adiponectin system genes in the rat adrenal gland as well as its ontogenetic and physiological control. Furthermore, we examined the effects of acute and prolonged activation of HPA axis on ADN system in adipose tissue. By means of QPCR, ADN and AdipoR1 expression was demonstrated in rat adrenal cortex both at mRNA and protein levels, while AdipoR2 could only be detected at mRNA levels. ADN expression level was significantly upregulated in a developing and regenerating adrenal cortex. Globular domain of adiponectin at 10(-9) M stimulated corticosterone output and BrdU incorporation by cultured rat adrenocortical cells. Moreover, both acute (ACTH and ether stress) and prolonged (ACTH) adrenal stimulation resulted in lowered ADN levels, while expression of AdipoR1 and AdipoR2 was upregulated by the acute treatment. Depending on its site of origin, visceral (VAT) or subcutaneous (SAT) adipose tissue responded differently to alterations in HPA axis. VAT expression of ADN and its receptors remained almost unchanged by experimental manipulations. In SAT, on the other hand, expression of ADN and AdipoR2 was markedly increased by ACTH treatment and stress, while dexamethasone suppressed ADN and AdipoR1 mRNA levels. The results of this study provide new evidence for direct and indirect interactions between adipokines and HPA axis.


International Journal of Molecular Medicine | 2015

Sex-related gene expression profiles in the adrenal cortex in the mature rat: microarray analysis with emphasis on genes involved in steroidogenesis.

Marcin Trejter; Anna Hochol; Marianna Tyczewska; Agnieszka Ziolkowska; Karol Jopek; Marta Szyszka; Ludwik K. Malendowicz; Marcin Rucinski

Notable sex-related differences exist in mammalian adrenal cortex structure and function. In adult rats, the adrenal weight and the average volume of zona fasciculata cells of females are larger and secrete greater amounts of corticosterone than those of males. The molecular bases of these sex-related differences are poorly understood. In this study, to explore the molecular background of these differences, we defined zone- and sex-specific transcripts in adult male and female (estrous cycle phase) rats. Twelve-week-old rats of both genders were used and samples were taken from the zona glomerulosa (ZG) and zona fasciculata/reticularis (ZF/R) zones. Transcriptome identification was carried out using the Affymetrix® Rat Gene 1.1 ST Array. The microarray data were compared by fold change with significance according to moderated t-statistics. Subsequently, we performed functional annotation clustering using the Gene Ontology (GO) and Database for Annotation, Visualization and Integrated Discovery (DAVID). In the first step, we explored differentially expressed transcripts in the adrenal ZG and ZF/R. The number of differentially expressed transcripts was notably higher in the female than in the male rats (702 vs. 571). The differentially expressed genes which were significantly enriched included genes involved in steroid hormone metabolism, and their expression levels in the ZF/R of adult female rats were significantly higher compared with those in the male rats. In the female ZF/R, when compared with that of the males, prevailing numbers of genes linked to cell fraction, oxidation/reduction processes, response to nutrients and to extracellular stimuli or steroid hormone stimuli were downregulated. The microarray data for key genes involved directly in steroidogenesis were confirmed by qPCR. Thus, when compared with that of the males, in the female ZF/R, higher expression levels of genes involved directly in steroid hormone synthesis were accompanied by lower expression levels of genes regulating basal cell functions.


Peptides | 2012

Evidence suggesting that ghrelin O-acyl transferase inhibitor acts at the hypothalamus to inhibit hypothalamo-pituitary-adrenocortical axis function in the rat.

Marcin Rucinski; Agnieszka Ziolkowska; Marta Szyszka; Anna Hochol; Ludwik K. Malendowicz

Production of n-octanoyl-modified ghrelin (GHREL), an active form of the peptide requires prohormone processing protease and GHREL O-acyltransferase (GOAT), as well as n-octanoic acid. Recently a selective GOAT antagonist (GO-CoA-Tat) was invented and this tool was used to study the possible role of endogenous GHREL in regulating HPA axis function in the rat. Administration of GOAT inhibitor (GOATi) resulted in a notable decrease in plasma ACTH, aldosterone and corticosterone concentrations at min 60 of experiment. Octanoic acid (OA) administration had no effect on levels of studied hormones. Plasma levels of unacylated and acylated GHREL remained unchanged for 60min after either GOATi or OA administration. Under experimental conditions applied, no significant changes were observed in the levels of GOAT mRNA in hypothalamus, pituitary, adrenal and stomach fundus. After GOATi injection hypothalamic CRH mRNA levels were elevated at 30 min and pituitary POMC mRNA levels at 60 min. Both GOATi and OA lowered basal, but not K(+)-stimulated CRH release by hypothalamic explants and had no effect on basal or CRH-stimulated ACTH release by pituitary slices. Neither GOATi nor OA affected corticosterone secretion by freshly isolated or cultured rat adrenocortical cells. Thus, results of our study suggest that in the rat endogenous GHREL exerts tonic stimulating effect on hypothalamic CRH release. This effect could be demonstrated by administering rats with selected inhibitor of ghrelin O-acyltransferase, the enzyme responsible for GHREL acylation, a process which is absolutely required for both GHSR-1a binding and its central endocrine activities.


Frontiers in Endocrinology | 2017

Transcriptome Profile of Rat Adrenal Evoked by Gonadectomy and Testosterone or Estradiol Replacement

Karol Jopek; Piotr Celichowski; Marta Szyszka; Marianna Tyczewska; Paulina Milecka; Ludwik K. Malendowicz; Marcin Rucinski

Sex differences in adrenal cortex structure and function are well known in different species. In the rat, they are manifested as larger adrenal cortex and higher corticosterone secretion by females compared with males. These sex differences depend, among others, on functioning of the hypothalamic-pituitary-adrenal axis (HPA). In this aspect, it is widely accepted that testosterone exerts an inhibitory and estradiol stimulatory effect on the said axis. The molecular bases of these sex-related differences are poorly understood. Therefore, we performed studies aimed to demonstrate the effect of testosterone and estradiol on the expression of differentially regulated genes in rat adrenal gland. The classical method applied in the study—gonadectomy and gonadal hormone replacement—allows obtaining results suggesting a physiological role of the tested hormone (testosterone or estradiol) in the regulation of the specific genes. Adult male and female rats were either gonadectomized or sham operated. Half of orchiectomized rats were replaced with testosterone while ovariectomized ones with estradiol. Transcriptome was identified by means of Affymetrix® Rat Gene 2.1 ST Array. Differentially expressed genes were analyzed by means of DAVID web-based bioinformatic tools and confirmed by means of Gene Set Enrichment Analysis. For selected genes, validation of the results was performed using QPCR. Performed experiments have provided unexpected results. Contrary to expectations, in orchiectomized rats, testosterone replacement stimulates expression of numerous genes, mainly those associated with lipids and cholesterol metabolism. However, in ovariectomized animals, estradiol replacement inhibits the expression of genes, mainly those involved in intracellular signaling pathways. The physiological relevance of these findings awaits further research.


Peptides | 2015

Visinin-like peptide 1 in adrenal gland of the rat. Gene expression and its hormonal control

Marcin Trejter; Anna Hochol; Marianna Tyczewska; Agnieszka Ziolkowska; Karol Jopek; Marta Szyszka; Ludwik K. Malendowicz; Marcin Rucinski

VSNL1 encodes the calcium-sensor protein visinin-like 1 and was identified previously as an upregulated gene in a sample set of aldosterone-producing adenomas. Recently, by means of microarray studies we demonstrated high expression of Vsnl1 gene in rat adrenal zona glomerulosa (ZG). Only scanty data are available on the role of this gene in adrenal function as well as on regulation of its expression by factors affecting adrenal cortex structure and function. Therefore we performed relevant studies aimed at clarifying some of the above issues. By Affymetrix(®) Rat Gene 1.1 ST Array Strip, QPCR and immunohistochemistry we demonstrated that expression levels of Vsnl1 in the rat adrenal ZG are notably higher than in the fasciculata/reticularis zone. In QPCR assay this difference was approximately 10 times higher. Expression of this gene in the rat adrenal gland or adrenocortical cells was acutely down regulated by ACTH, while chronic administration of corticotrophin or dexamethasone did not change Vsnl1 mRNA levels. In enucleation-induced adrenocortical regeneration expression levels of both Vsnl1 and Cyp11b2 were notably lowered and positively correlated. Despite these findings, the physiological significance of adrenal Vsnl1 remains unclear, and requires further investigation.


International Journal of Endocrinology | 2014

Enucleation-Induced Rat Adrenal Gland Regeneration: Expression Profile of Selected Genes Involved in Control of Adrenocortical Cell Proliferation

Marianna Tyczewska; Marcin Rucinski; Agnieszka Ziolkowska; Marta Szyszka; Marcin Trejter; Anna Hochol-Molenda; Krzysztof W. Nowak; Ludwik K. Malendowicz

Enucleation-induced adrenal regeneration is a highly controlled process; however, only some elements involved in this process have been recognized. Therefore, we performed studies on regenerating rat adrenals. Microarray RNA analysis and QPCR revealed that enucleation resulted in a rapid elevation of expression of genes involved in response to wounding, defense response, and in immunological processes. Factors encoded by these genes obscure possible priming effects of various cytokines on initiation of regeneration. In regenerating adrenals we identified over 100 up- or downregulated genes involved in adrenocortical cell proliferation. The changes were most significant at days 2-3 after enucleation and their number decreased during regeneration. For example, expression analysis revealed a notable upregulation of the growth arrest gene, Gadd45, only 24 hours after surgery while expression of cyclin B1 and Cdk1 genes was notably elevated between days 1–8 of regeneration. These changes were accompanied by changes in expression levels of numerous growth factors and immediate-early transcription factors genes. Despite notable differences in mechanisms of adrenal and liver regeneration, in regenerating adrenals we identified genes, the expression of which is well recognized in regenerating liver. Thus, it seems legitimate to suggest that, in the rat, the general model of liver and adrenal regeneration demonstrate some degree of similarity.


International Journal of Molecular Medicine | 2014

Expression of selected genes involved in steroidogenesis in the course of enucleation-induced rat adrenal regeneration

Marianna Tyczewska; Marcin Rucinski; Agnieszka Ziolkowska; Marcin Trejter; Marta Szyszka; Ludwik K. Malendowicz

The enucleation-induced (EI) rapid proliferation of adrenocortical cells is followed by their differentiation, the degree of which may be characterized by the expression of genes directly and indirectly involved in steroid hormone biosynthesis. In this study, out of 30,000 transcripts of genes identified by means of Affymetrix Rat Gene 1.1 ST Array, we aimed to select genes (either up- or downregulated) involved in steroidogenesis in the course of enucleation-induced adrenal regeneration. On day 1, we found 32 genes with altered expression levels, 15 were upregulated and 17 were downregulated [i.e., 3β-hydroxysteroid dehydrogenase (Hsd3β), nuclear receptor subfamily 0, group B, member 1 (Nr0b1), cytochrome P450 aldosterone synthase (Cyp11b2) and sterol O-acyltransferase 1 (Soat1)]. On day 15, the expression of only 2 genes was increased and that of 3 was decreased. The investigated genes were clustered according to an hierarchical clustering algorithm and 4 clusters were obtained. Quantitative PCR (qPCR) confirmed the much lower mRNA expression levels of steroidogenic acute regulatory protein (StAR) during the regeneration process compared to the control, while the cholesterol side-chain cleavage enzyme (cholesterol desmolase; Cyp11a1) and Hsd3β genes presented similar expression profiles throughout the entire regeneration process. Cyp11b2 mRNA levels remained very low during the whole regeneration period. Fatty acid binding protein 6 (Fabp6) was markedly upregulated, whereas hormone-sensitive lipase (Lipe) was downregulated. The expression of Soat1 was lowest on regeneration day 1 and, subsequently, its expression increased from there on, reaching levels higher than the control. Dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (Dax-1) mRNA levels were lowest on day 1 of the experiment; however, throughout the entire experimental period, there were no statistically significant differences observed. After the initial decrease in steroidogenic factor 1 (Sf-1) mRNA levels observed on the 1st day of the experiment, a marked upregulation in its expression was observed from there on. Data from the current study strongly suggest the role of Fabp6, Lipe and Soat1 in supplying substrates of regenerating adrenocortical cells for steroid synthesis. Our results indicate that during the first days of adrenal regeneration, intense synthesis of cholesterol may occur, which is then followed by its conversion into cholesteryl esters. Moreover, our data demonstrated that in enucleation-induced regeneration, the restoration of genes involved in glucocorticoid synthesis is notably shorter than that of those involved in aldosterone synthesis.


Peptides | 2012

Angiogenesis in the course of enucleation-induced adrenal regeneration--expression of selected genes and proteins involved in development of capillaries.

Marianna Tyczewska; Marcin Rucinski; Marcin Trejter; Agnieszka Ziolkowska; Marta Szyszka; Ludwik K. Malendowicz

Enucleation-induced rapid proliferation of adrenocortical cells and restoration of adrenals structure requires formation of new blood vessels. The performed studies aimed to select from around 30,000 transcripts, identified by means of Affymetrix(®) Rat Gene 1.1 ST Array, the genes involved in angiogenesis in the course of enucleation-induced adrenal regeneration and to characterize their expression levels in regenerating gland between days 1 and 15 after surgery. At day 1 of regeneration almost 2000 genes showed more than 2-fold up/down-regulation. At days 1-3 after surgery the highest expression demonstrated genes involved in the development of inflammation and blood clot formation. From around 2000 genes we selected genes involved in angiogenesis. During the regeneration 62 genes involved in angiogenesis were identified as up- or down-regulated. Some data were also validated by QPCR. Levels of Vegfa and Kdr (Vegfr-2) mRNAs were very low at day 1 of regeneration and remained unchanged thereafter. The highest expression of Figf gene was found at day 5 while that of Vwf gene at days 1 and 2 after surgery. Levels of Thy1 mRNA increased notably between days 2 and 5 of the experiment. In comparison to control rats, Mc2r (ACTH receptor) expression was lowered at day 1 of the experiment and remained unchanged thereafter. This suggests that enucleation-induced adrenal neoangiogenesis does not require elevated expression of ACTH receptor. Results of our studies strongly suggest that enucleation-induced adrenal regeneration is an angiogenesis-dependent process. Moreover, immunohistochemistry suggests that regenerating adrenal parenchymal cells release numerous angiogenic factors which paracrinally may regulate formation of new vessels.

Collaboration


Dive into the Marta Szyszka's collaboration.

Top Co-Authors

Avatar

Marcin Rucinski

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ludwik K. Malendowicz

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Marianna Tyczewska

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Ziolkowska

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Karol Jopek

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Paulina Milecka

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Piotr Celichowski

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Marcin Trejter

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Hochol

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Lukasz Paschke

Poznan University of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge