Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martha L. Funderburgh is active.

Publication


Featured researches published by Martha L. Funderburgh.


Journal of Biological Chemistry | 1997

Mimecan, the 25-kDa Corneal Keratan Sulfate Proteoglycan, Is a Product of the Gene Producing Osteoglycin

James L. Funderburgh; Lolita M. Corpuz; Mary R. Roth; Martha L. Funderburgh; Elena S. Tasheva; Gary W. Conrad

Bovine cornea contains three unique keratan sulfate proteoglycans (KSPGs), of which two (lumican and keratocan) have been characterized using molecular cloning. The gene for the third protein (KSPG25) has not been identified. This study examined the relationship between the KSPG25 protein and the gene for osteoglycin, a 12-kDa bone glycoprotein. The N-terminal amino acid sequence of KSPG25 occurs in osteoglycin cDNA cloned from bovine cornea. The osteoglycin amino acid sequence makes up the C-terminal 47% of the deduced sequence of the KSPG25 protein. Antibodies to osteoglycin reacted with intact corneal KSPG, with KSPG25 protein, and with a 36-kDa protein, distinct from lumican and keratocan. KSPG25-related proteins, not modified with keratan sulfate, were also detected in several connective tissues. Northern blot analysis showed mRNA transcripts of 2.4, 2.5, and 2.6 kilobases in numerous tissues with the 2.4-kilobase transcript enriched in ocular tissues. Ribonuclease protection analysis detected several protected KSPG25 mRNA fragments, suggesting alternate splicing of KSPG25 transcripts. We conclude that the full-length translation product of the gene producing osteoglycin is a corneal keratan sulfate proteoglycan, also present in many non-corneal tissues without keratan sulfate chains. The multiple size protein products of this gene appear to result from in situ proteolytic processing and/or alternative splicing of mRNA. The name mimecan is proposed for this gene and its products.


Stem Cells | 2009

Stem Cell Therapy Restores Transparency to Defective Murine Corneas

Yiqin Du; Eric C. Carlson; Martha L. Funderburgh; David E. Birk; Eric Pearlman; N. Guo; Winston W.-Y. Kao; James L. Funderburgh

Corneal scarring from trauma and inflammation disrupts vision for millions worldwide, but corneal transplantation, the primary therapy for corneal blindness, is unavailable to many affected individuals. In this study, stem cells isolated from adult human corneal stroma were examined for the ability to correct stromal opacity in a murine model by direct injection of cells into the corneal stroma. In wild‐type mice, injected human stem cells remained viable for months without fusing with host cells or eliciting an immune T‐cell response. Human corneal‐specific extracellular matrix, including the proteoglycans lumican and keratocan, accumulated in the treated corneas. Lumican‐null mice have corneal opacity similar to that of scar tissue as a result of disruption of stromal collagen organization. After injection with human stromal stem cells, stromal thickness and collagen fibril defects in these mice were restored to that of normal mice. Corneal transparency in the treated mice was indistinguishable from that of wild‐type mice. These results support the immune privilege of adult stem cells and the ability of stem cell therapy to regenerate tissue in a manner analogous to organogenesis and clearly different from that of normal wound healing. The results suggest that cell‐based therapy can be an effective approach to treatment of human corneal blindness. STEM CELLS 2009;27:1635–1642


The FASEB Journal | 2005

PAX6 expression identifies progenitor cells for corneal keratocytes

Martha L. Funderburgh; Yiqin Du; Mary M. Mann; Nirmala SundarRaj; James L. Funderburgh

Keratocytes of the corneal stroma produce a transparent extracellular matrix required for vision. During wound‐healing and in vitro, keratocytes proliferate, becoming fibroblastic, and lose biosynthesis of unique corneal matrix components. This study sought identification of cells in the corneal stroma capable of assuming a keratocyte phenotype after extensive proliferation. About 3% of freshly isolated bovine stromal cells exhibited clonal growth. In low‐mitogen media, selected clonal cultures displayed dendritic morphology and expressed high levels of keratan sulfate, aldehyde dehydrogenase 3A1, and keratocan, molecular markers of keratocyte phenotype. In protein‐free media, both primary keratocytes and selected clonal cells aggregated to form attachment‐independent spheroids expressing elevated levels of those marker molecules. The selected clonal cells exhibited normal karyotype and underwent replicative senescence after 65–70 population doublings; however, they continued expression of keratocyte phenotypic markers throughout their replicative life span. The progenitor cells expressed elevated mRNA for several genes characteristic of stem cells and also for genes expressed during ocular development PAX6, Six2, and Six3. PAX6 protein was detected in the cultured progenitor cells and a small number of stromal cells in intact tissue but was absent in cultured keratocytes and fibroblasts. Cytometry demonstrated PAX6 protein in 4% of freshly isolated stromal cells. These results demonstrate the presence of a previously unrecognized population of PAX6‐positive cells in adult corneal stroma that maintain the potential to assume a keratocyte phenotype even after extensive replication. The presence of such progenitor cells has implications for corneal biology and for cell‐based therapies targeting corneal scarring.


Science Translational Medicine | 2014

Human limbal biopsy-derived stromal stem cells prevent corneal scarring.

Sayan Basu; Andrew Hertsenberg; Martha L. Funderburgh; Michael K. Burrow; Mary M. Mann; Yiqin Du; Kira L. Lathrop; Fatima N. Syed-Picard; Sheila M. Adams; David E. Birk; James L. Funderburgh

Human stromal stem cells isolated from limbal biopsies prevented corneal scarring in a murine model of corneal wounding. All Eyes on Limbal Stem Cells Our corneas—transparent, collagen-based structures that allow us to see—are easily damaged by trauma and infection, resulting in scarring and, in many cases, blindness. Although corneal transplant is the clinical norm, adverse immune responses and a shortage of cornea donors are serious limitations. Basu and colleagues devised a personalized cell-based, nonsurgical approach to prevent corneal scarring. They obtained mesenchymal stem cells from the human limbus (the region between the cornea and the sclera) and confirmed that they could be differentiated into keratocytes (corneal cells) in vitro. The human limbal biopsy–derived stromal cells, or LBSCs, were then placed in a fibrin gel and applied to the surface of debridement wounds in mice. The LBSCs were able to regenerate damaged stromal tissue in the animals, resembling native corneal tissue. Because these cells can be obtained directly from the patient and because fibrin-based products are already used in people, this approach could translate soon to treat stromal scarring, a major cause of corneal blindness. Conventional allograft therapy for corneal scarring is widespread and successful, but donor tissue is not universally available, and some grafts fail owing to rejection and complications such as endothelial failure. We investigated direct treatment of corneal scarring using autologous stem cells, a therapy that, if successful, could reduce the need for corneal grafts. Mesenchymal cells were expanded from small superficial, clinically replicable limbal biopsies of human cadaveric corneo-scleral rims. Limbal biopsy–derived stromal cells (LBSCs) expanded rapidly in media containing human serum, were highly clonogenic, and could generate spheres expressing stem cell genes (ABCG2, Nestin, NGFR, Oct4, PAX6, and Sox2). Human LBSCs differentiated into keratocytes expressing characteristic marker genes (ALDH3A1, AQP1, KERA, and PTGDS) and organized a thick lamellar stroma-like tissue containing aligned collagen and keratan sulfate proteoglycans when cultured on aligned nanofiber substrata. When engrafted into mouse corneal wounds, LBSCs prevented formation of light-scattering scar tissue containing fibrotic matrix components. The presence of LBSCs induced regeneration of ablated stroma with tissue exhibiting lamellar structure and collagen organization indistinguishable from that of native tissue. Because the limbus can be easily biopsied from either eye of an affected individual and LBSCs capable of corneal stromal remodeling can be expanded under xeno-free autologous conditions, these cells present a potential for autologous stem cell–based treatment of corneal stromal blindness.


Journal of Biological Chemistry | 1996

Synthesis of Corneal Keratan Sulfate Proteoglycans by Bovine Keratocytes in Vitro

James L. Funderburgh; Martha L. Funderburgh; Mary M. Mann; Sujatha Prakash; Gary W. Conrad

Keratan sulfate proteoglycans (KSPGs) are the major proteoglycans of the cornea and are secreted by keratocytes in the corneal stroma. Previous studies have been able to show only transient secretion of KSPG in cell culture. In this study, cultures of bovine keratocytes were found to secrete the three previously characterized KSPG proteins into culture medium. Reactivity with monoclonal antibody I22 demonstrated substitution of these proteins with keratan sulfate chains. KSPG constituted 15% of the proteoglycan metabolically labeled with [35S]sulfate in keratocyte culture medium. This labeled KSPG contained keratan sulfate chains of 4700 Da compared to 21,000 Da for bovine corneal keratan sulfate. Labeled keratan sulfate from cultures contained nonsulfated, monosulfated, and disulfated disaccharides that were released by digestion with endo-β-galactosidase or keratanase II. Nonsulfated disaccharides were relatively more abundant in keratan sulfate from culture than in corneal keratan sulfate. These results show that cultured bovine keratocytes maintain the ability to express all three of the known KSPG proteins, modified with keratan sulfate chains and sulfated on both N-acetylglucosamine and galactose moieties. KSPG made in vitro differs from that found in vivo in the length and sulfation of its keratan sulfate chains. The availability of cell cultures secreting corneal keratan sulfate proteoglycans provides an opportunity to examine biosynthesis and control of this important class of molecules.


Investigative Ophthalmology & Visual Science | 2012

Multipotent Stem Cells from Trabecular Meshwork Become Phagocytic TM Cells

Yiqin Du; Danny S. Roh; Mary M. Mann; Martha L. Funderburgh; James L. Funderburgh; Joel S. Schuman

PURPOSE To isolate and characterize stem cells from human trabecular meshwork (TM) and to investigate the potential of these stem cells to differentiate into TM cells. METHODS Human trabecular meshwork stem cells (TMSCs) were isolated as side population cells by fluorescence-activated cell sorting or isolated by clonal cultures. Passaged TMSCs were compared with primary TM cells by immunostaining and quantitative RT-PCR. TMSC purity was assessed by flow cytometry and TMSC multipotency was examined by induction of neural cells, adipocytes, keratocytes, or TM cells. Differential gene expression was detected by quantitative RT-PCR, immunostaining, and immunoblotting. TM cell function was evaluated by phagocytic assay using inactivated Staphylococcus aureus bioparticles. RESULTS Side population and clonal isolated cells expressed stem cell markers ABCG2, Notch1, OCT-3/4, AnkG, and MUC1 but not TM markers AQP1, MGP, CHI3L1, or TIMP3. Passaged TMSCs are a homogeneous population with >95% cells positive to CD73, CD90, CD166, or Bmi1. TMSCs exhibited multipotent ability of differentiation into a variety of cell types with expression of neural markers neurofilament, β-tubulin III, GFAP; or keratocyte-specific markers keratan sulfate and keratocan; or adipocyte markers ap2 and leptin. TMSC readily differentiated into TM cells with phagocytic function and expression of TM markers AQP1, CHI3L1, and TIMP3. CONCLUSIONS TMSCs, isolated as side population or as clones, express specific stem cell markers, are homogeneous and multipotent, with the ability to differentiate into phagocytic TM cells. These cells offer a potential for development of a novel stem cell-based therapy for glaucoma.


PLOS ONE | 2013

Differentiation of Human Embryonic Stem Cells into Cells with Corneal Keratocyte Phenotype

Audrey A. Chan; Andrew Hertsenberg; Martha L. Funderburgh; Mary M. Mann; Yiqin Du; K. Davoli; Jocelyn Danielle Mich-Basso; Lei Yang; James L. Funderburgh

Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.


PLOS ONE | 2014

A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells.

Dimitrios Karamichos; Martha L. Funderburgh; Audrey E. K. Hutcheon; James D. Zieske; Yiqin Du; Jian Wu; James L. Funderburgh

Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200–300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.


Stem Cells Translational Medicine | 2015

Dental Pulp Stem Cells: A New Cellular Resource for Corneal Stromal Regeneration

Fatima N. Syed-Picard; Yiqin Du; Kira L. Lathrop; Mary M. Mann; Martha L. Funderburgh; James L. Funderburgh

Corneal blindness afflicts millions of individuals worldwide and is currently treated by grafting with cadaveric tissues; however, there are worldwide donor tissue shortages, and many allogeneic grafts are eventually rejected. Autologous stem cells present a prospect for personalized regenerative medicine and an alternative to cadaveric tissue grafts. Dental pulp contains a population of adult stem cells and, similar to corneal stroma, develops embryonically from the cranial neural crest. We report that adult dental pulp cells (DPCs) isolated from third molars have the capability to differentiate into keratocytes, cells of the corneal stoma. After inducing differentiation in vitro, DPCs expressed molecules characteristic of keratocytes, keratocan, and keratan sulfate proteoglycans at both the gene and the protein levels. DPCs cultured on aligned nanofiber substrates generated tissue‐engineered, corneal stromal‐like constructs, recapitulating the tightly packed, aligned, parallel fibrillar collagen of native stromal tissue. After injection in vivo into mouse corneal stroma, human DPCs produced corneal stromal extracellular matrix containing human type I collagen and keratocan and did not affect corneal transparency or induce immunological rejection. These findings demonstrate a potential for the clinical application of DPCs in cellular or tissue engineering therapies for corneal stromal blindness.


Journal of Biological Chemistry | 2010

Hyaluronan Synthesis Mediates the Fibrotic Response of Keratocytes to Transforming Growth Factor β

N. Guo; Xuan Li; Mary M. Mann; Martha L. Funderburgh; Yiqin Du; James L. Funderburgh

TGFβ induces fibrosis in healing corneal wounds, and in vitro corneal keratocytes up-regulate expression of several fibrosis-related genes in response to TGFβ. Hyaluronan (HA) accumulates in healing corneas, and HA synthesis is induced by TGFβ by up-regulation of HA synthase 2. This study tested the hypothesis that HA acts as an extracellular messenger, enhancing specific fibrotic responses of keratocytes to TGFβ. HA synthesis inhibitor 4-methylumbelliferone (4MU) blocked TGFβ induction of HA synthesis in a concentration-dependent manner. 4MU also inhibited TGFβ-induced up-regulation of α-smooth muscle actin, collagen type III, and extra domain A-fibronectin. Chemical analogs of 4MU also inhibited fibrogenic responses in proportion to their inhibition of HA synthesis. 4MU, however, showed no effect on TGFβ induction of luciferase by the 3TP-Lux reporter plasmid. Inhibition of HA using siRNA to HA synthase 2 reduced TGFβ up-regulation of smooth muscle actin, fibronectin, and cell division. Similarly, brief treatment of keratocytes with hyaluronidase reduced TGFβ responses. These results suggest that newly synthesized cell-associated HA acts as an extracellular enhancer of wound healing and fibrosis in keratocytes by augmenting a limited subset of the cellular responses to TGFβ.

Collaboration


Dive into the Martha L. Funderburgh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary M. Mann

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yiqin Du

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny S. Roh

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Guo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary R. Roth

Kansas State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge