Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary M. Mann is active.

Publication


Featured researches published by Mary M. Mann.


The FASEB Journal | 2005

PAX6 expression identifies progenitor cells for corneal keratocytes

Martha L. Funderburgh; Yiqin Du; Mary M. Mann; Nirmala SundarRaj; James L. Funderburgh

Keratocytes of the corneal stroma produce a transparent extracellular matrix required for vision. During wound‐healing and in vitro, keratocytes proliferate, becoming fibroblastic, and lose biosynthesis of unique corneal matrix components. This study sought identification of cells in the corneal stroma capable of assuming a keratocyte phenotype after extensive proliferation. About 3% of freshly isolated bovine stromal cells exhibited clonal growth. In low‐mitogen media, selected clonal cultures displayed dendritic morphology and expressed high levels of keratan sulfate, aldehyde dehydrogenase 3A1, and keratocan, molecular markers of keratocyte phenotype. In protein‐free media, both primary keratocytes and selected clonal cells aggregated to form attachment‐independent spheroids expressing elevated levels of those marker molecules. The selected clonal cells exhibited normal karyotype and underwent replicative senescence after 65–70 population doublings; however, they continued expression of keratocyte phenotypic markers throughout their replicative life span. The progenitor cells expressed elevated mRNA for several genes characteristic of stem cells and also for genes expressed during ocular development PAX6, Six2, and Six3. PAX6 protein was detected in the cultured progenitor cells and a small number of stromal cells in intact tissue but was absent in cultured keratocytes and fibroblasts. Cytometry demonstrated PAX6 protein in 4% of freshly isolated stromal cells. These results demonstrate the presence of a previously unrecognized population of PAX6‐positive cells in adult corneal stroma that maintain the potential to assume a keratocyte phenotype even after extensive replication. The presence of such progenitor cells has implications for corneal biology and for cell‐based therapies targeting corneal scarring.


Science Translational Medicine | 2014

Human limbal biopsy-derived stromal stem cells prevent corneal scarring.

Sayan Basu; Andrew Hertsenberg; Martha L. Funderburgh; Michael K. Burrow; Mary M. Mann; Yiqin Du; Kira L. Lathrop; Fatima N. Syed-Picard; Sheila M. Adams; David E. Birk; James L. Funderburgh

Human stromal stem cells isolated from limbal biopsies prevented corneal scarring in a murine model of corneal wounding. All Eyes on Limbal Stem Cells Our corneas—transparent, collagen-based structures that allow us to see—are easily damaged by trauma and infection, resulting in scarring and, in many cases, blindness. Although corneal transplant is the clinical norm, adverse immune responses and a shortage of cornea donors are serious limitations. Basu and colleagues devised a personalized cell-based, nonsurgical approach to prevent corneal scarring. They obtained mesenchymal stem cells from the human limbus (the region between the cornea and the sclera) and confirmed that they could be differentiated into keratocytes (corneal cells) in vitro. The human limbal biopsy–derived stromal cells, or LBSCs, were then placed in a fibrin gel and applied to the surface of debridement wounds in mice. The LBSCs were able to regenerate damaged stromal tissue in the animals, resembling native corneal tissue. Because these cells can be obtained directly from the patient and because fibrin-based products are already used in people, this approach could translate soon to treat stromal scarring, a major cause of corneal blindness. Conventional allograft therapy for corneal scarring is widespread and successful, but donor tissue is not universally available, and some grafts fail owing to rejection and complications such as endothelial failure. We investigated direct treatment of corneal scarring using autologous stem cells, a therapy that, if successful, could reduce the need for corneal grafts. Mesenchymal cells were expanded from small superficial, clinically replicable limbal biopsies of human cadaveric corneo-scleral rims. Limbal biopsy–derived stromal cells (LBSCs) expanded rapidly in media containing human serum, were highly clonogenic, and could generate spheres expressing stem cell genes (ABCG2, Nestin, NGFR, Oct4, PAX6, and Sox2). Human LBSCs differentiated into keratocytes expressing characteristic marker genes (ALDH3A1, AQP1, KERA, and PTGDS) and organized a thick lamellar stroma-like tissue containing aligned collagen and keratan sulfate proteoglycans when cultured on aligned nanofiber substrata. When engrafted into mouse corneal wounds, LBSCs prevented formation of light-scattering scar tissue containing fibrotic matrix components. The presence of LBSCs induced regeneration of ablated stroma with tissue exhibiting lamellar structure and collagen organization indistinguishable from that of native tissue. Because the limbus can be easily biopsied from either eye of an affected individual and LBSCs capable of corneal stromal remodeling can be expanded under xeno-free autologous conditions, these cells present a potential for autologous stem cell–based treatment of corneal stromal blindness.


Journal of Biological Chemistry | 1996

Synthesis of Corneal Keratan Sulfate Proteoglycans by Bovine Keratocytes in Vitro

James L. Funderburgh; Martha L. Funderburgh; Mary M. Mann; Sujatha Prakash; Gary W. Conrad

Keratan sulfate proteoglycans (KSPGs) are the major proteoglycans of the cornea and are secreted by keratocytes in the corneal stroma. Previous studies have been able to show only transient secretion of KSPG in cell culture. In this study, cultures of bovine keratocytes were found to secrete the three previously characterized KSPG proteins into culture medium. Reactivity with monoclonal antibody I22 demonstrated substitution of these proteins with keratan sulfate chains. KSPG constituted 15% of the proteoglycan metabolically labeled with [35S]sulfate in keratocyte culture medium. This labeled KSPG contained keratan sulfate chains of 4700 Da compared to 21,000 Da for bovine corneal keratan sulfate. Labeled keratan sulfate from cultures contained nonsulfated, monosulfated, and disulfated disaccharides that were released by digestion with endo-β-galactosidase or keratanase II. Nonsulfated disaccharides were relatively more abundant in keratan sulfate from culture than in corneal keratan sulfate. These results show that cultured bovine keratocytes maintain the ability to express all three of the known KSPG proteins, modified with keratan sulfate chains and sulfated on both N-acetylglucosamine and galactose moieties. KSPG made in vitro differs from that found in vivo in the length and sulfation of its keratan sulfate chains. The availability of cell cultures secreting corneal keratan sulfate proteoglycans provides an opportunity to examine biosynthesis and control of this important class of molecules.


Investigative Ophthalmology & Visual Science | 2012

Multipotent Stem Cells from Trabecular Meshwork Become Phagocytic TM Cells

Yiqin Du; Danny S. Roh; Mary M. Mann; Martha L. Funderburgh; James L. Funderburgh; Joel S. Schuman

PURPOSE To isolate and characterize stem cells from human trabecular meshwork (TM) and to investigate the potential of these stem cells to differentiate into TM cells. METHODS Human trabecular meshwork stem cells (TMSCs) were isolated as side population cells by fluorescence-activated cell sorting or isolated by clonal cultures. Passaged TMSCs were compared with primary TM cells by immunostaining and quantitative RT-PCR. TMSC purity was assessed by flow cytometry and TMSC multipotency was examined by induction of neural cells, adipocytes, keratocytes, or TM cells. Differential gene expression was detected by quantitative RT-PCR, immunostaining, and immunoblotting. TM cell function was evaluated by phagocytic assay using inactivated Staphylococcus aureus bioparticles. RESULTS Side population and clonal isolated cells expressed stem cell markers ABCG2, Notch1, OCT-3/4, AnkG, and MUC1 but not TM markers AQP1, MGP, CHI3L1, or TIMP3. Passaged TMSCs are a homogeneous population with >95% cells positive to CD73, CD90, CD166, or Bmi1. TMSCs exhibited multipotent ability of differentiation into a variety of cell types with expression of neural markers neurofilament, β-tubulin III, GFAP; or keratocyte-specific markers keratan sulfate and keratocan; or adipocyte markers ap2 and leptin. TMSC readily differentiated into TM cells with phagocytic function and expression of TM markers AQP1, CHI3L1, and TIMP3. CONCLUSIONS TMSCs, isolated as side population or as clones, express specific stem cell markers, are homogeneous and multipotent, with the ability to differentiate into phagocytic TM cells. These cells offer a potential for development of a novel stem cell-based therapy for glaucoma.


PLOS ONE | 2013

Differentiation of Human Embryonic Stem Cells into Cells with Corneal Keratocyte Phenotype

Audrey A. Chan; Andrew Hertsenberg; Martha L. Funderburgh; Mary M. Mann; Yiqin Du; K. Davoli; Jocelyn Danielle Mich-Basso; Lei Yang; James L. Funderburgh

Corneal transparency depends on a unique extracellular matrix secreted by stromal keratocytes, mesenchymal cells of neural crest lineage. Derivation of keratocytes from human embryonic stem (hES) cells could elucidate the keratocyte developmental pathway and open a potential for cell-based therapy for corneal blindness. This study seeks to identify conditions inducing differentiation of pluripotent hES cells to the keratocyte lineage. Neural differentiation of hES cell line WA01(H1) was induced by co-culture with mouse PA6 fibroblasts. After 6 days of co-culture, hES cells expressing cell-surface NGFR protein (CD271, p75NTR) were isolated by immunoaffinity adsorption, and cultured as a monolayer for one week. Keratocyte phenotype was induced by substratum-independent pellet culture in serum-free medium containing ascorbate. Gene expression, examined by quantitative RT-PCR, found hES cells co-cultured with PA6 cells for 6 days to upregulate expression of neural crest genes including NGFR, SNAI1, NTRK3, SOX9, and MSX1. Isolated NGFR-expressing cells were free of PA6 feeder cells. After expansion as a monolayer, mRNAs typifying adult stromal stem cells were detected, including BMI1, KIT, NES, NOTCH1, and SIX2. When these cells were cultured as substratum-free pellets keratocyte markers AQP1, B3GNT7, PTDGS, and ALDH3A1 were upregulated. mRNA for keratocan (KERA), a cornea-specific proteoglycan, was upregulated more than 10,000 fold. Culture medium from pellets contained high molecular weight keratocan modified with keratan sulfate, a unique molecular component of corneal stroma. These results show hES cells can be induced to differentiate into keratocytes in vitro. Pluripotent stem cells, therefore, may provide a renewable source of material for development of treatment of corneal stromal opacities.


Stem Cells Translational Medicine | 2015

Dental Pulp Stem Cells: A New Cellular Resource for Corneal Stromal Regeneration

Fatima N. Syed-Picard; Yiqin Du; Kira L. Lathrop; Mary M. Mann; Martha L. Funderburgh; James L. Funderburgh

Corneal blindness afflicts millions of individuals worldwide and is currently treated by grafting with cadaveric tissues; however, there are worldwide donor tissue shortages, and many allogeneic grafts are eventually rejected. Autologous stem cells present a prospect for personalized regenerative medicine and an alternative to cadaveric tissue grafts. Dental pulp contains a population of adult stem cells and, similar to corneal stroma, develops embryonically from the cranial neural crest. We report that adult dental pulp cells (DPCs) isolated from third molars have the capability to differentiate into keratocytes, cells of the corneal stoma. After inducing differentiation in vitro, DPCs expressed molecules characteristic of keratocytes, keratocan, and keratan sulfate proteoglycans at both the gene and the protein levels. DPCs cultured on aligned nanofiber substrates generated tissue‐engineered, corneal stromal‐like constructs, recapitulating the tightly packed, aligned, parallel fibrillar collagen of native stromal tissue. After injection in vivo into mouse corneal stroma, human DPCs produced corneal stromal extracellular matrix containing human type I collagen and keratocan and did not affect corneal transparency or induce immunological rejection. These findings demonstrate a potential for the clinical application of DPCs in cellular or tissue engineering therapies for corneal stromal blindness.


Journal of Biological Chemistry | 2010

Hyaluronan Synthesis Mediates the Fibrotic Response of Keratocytes to Transforming Growth Factor β

N. Guo; Xuan Li; Mary M. Mann; Martha L. Funderburgh; Yiqin Du; James L. Funderburgh

TGFβ induces fibrosis in healing corneal wounds, and in vitro corneal keratocytes up-regulate expression of several fibrosis-related genes in response to TGFβ. Hyaluronan (HA) accumulates in healing corneas, and HA synthesis is induced by TGFβ by up-regulation of HA synthase 2. This study tested the hypothesis that HA acts as an extracellular messenger, enhancing specific fibrotic responses of keratocytes to TGFβ. HA synthesis inhibitor 4-methylumbelliferone (4MU) blocked TGFβ induction of HA synthesis in a concentration-dependent manner. 4MU also inhibited TGFβ-induced up-regulation of α-smooth muscle actin, collagen type III, and extra domain A-fibronectin. Chemical analogs of 4MU also inhibited fibrogenic responses in proportion to their inhibition of HA synthesis. 4MU, however, showed no effect on TGFβ induction of luciferase by the 3TP-Lux reporter plasmid. Inhibition of HA using siRNA to HA synthase 2 reduced TGFβ up-regulation of smooth muscle actin, fibronectin, and cell division. Similarly, brief treatment of keratocytes with hyaluronidase reduced TGFβ responses. These results suggest that newly synthesized cell-associated HA acts as an extracellular enhancer of wound healing and fibrosis in keratocytes by augmenting a limited subset of the cellular responses to TGFβ.


Journal of Biological Chemistry | 2007

A rapid transient increase in hyaluronan synthase-2 mRNA initiates secretion of hyaluronan by corneal keratocytes in response to transforming growth factor beta.

N. Guo; David Kanter; Martha L. Funderburgh; Mary M. Mann; Yiqin Du; James L. Funderburgh

Keratocytes of the corneal stroma produce transparent extracellular matrix devoid of hyaluronan (HA); however, in corneal pathologies and wounds, HA is abundant. We previously showed primary keratocytes cultured under serum-free conditions to secrete matrix similar to that of normal stroma, but serum and transforming growth factor β (TGFβ) induced secretion of fibrotic matrix components, including HA. This study found HA secretion by primary bovine keratocytes to increase rapidly in response to TGFβ, reaching a maximum in 12 h and then decreasing to <5% of the maximum by 48 h. Cell-free biosynthesis of HA by cell extracts also exhibited a transient peak at 12 h after TGFβ treatment. mRNA for hyaluronan synthase enzymes HAS1 and HAS2 increased >10- and >50-fold, respectively, in 4–6 h, decreasing to near original levels after 24–48 h. Small interfering RNA against HAS2 inhibited the transient increase of HAS2 mRNA and completely blocked HA induction, but small interfering RNA to HAS1 had no effect on HA secretion. HAS2 mRNA was induced by a variety of mitogens, and TGFβ acted synergistically to induce HAS2 by as much as 150-fold. In addition to HA synthesis, treatment with TGFβ induced degradation of fluorescein-HA added to culture medium. These results show HA secretion by keratocytes to be initiated by a rapid transient increase in the HAS2 mRNA pool. The very rapid induction of HA expression in keratocytes suggests a functional role of this molecule in the fibrotic response of keratocytes to wound healing.


Investigative Ophthalmology & Visual Science | 2009

Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans

Robert D. Young; Shivalingappa K. Swamynathan; Craig Boote; Mary M. Mann; Andrew J. Quantock; Joram Piatigorsky; James L. Funderburgh; Keith Michael Andrew Meek

PURPOSE Klf4, one of the highly expressed transcription factors in the mouse cornea, plays an important role in maturation and maintenance of the ocular surface. In this study, the structure and proteoglycan composition of the Klf4 conditional null (Klf4CN) corneal stroma was investigated, to further characterize the previously reported Klf4CN stromal edema. METHODS Collagen fibril spacing and diameter were calculated from scattering intensity profiles from small angle synchrotron x-ray scattering patterns obtained across the cornea along a vertical meridian at 0.5-mm intervals. Collagen fibril organization and proteoglycans were visualized by electron microscopy (EM), with or without the cationic dye cuprolinic blue. Proteoglycans and glycosaminoglycans were further analyzed by fluorophore-assisted carbohydrate electrophoresis (FACE) and immunoblot analysis. Q-RT-PCR was used to measure the transcript levels. RESULTS In the central cornea, the average collagen interfibrillar Bragg spacing increased from 44.5 nm (SD +/-1.8) in wild-type to 66.5 nm (SD +/-2.3) in Klf4CN, as measured by x-ray scattering and confirmed by EM. Mean collagen fibril diameter increased from 32 nm (SD +/-0.4) in wild-type to 42.3 nm (SD +/-4.8) in Klf4CN corneal stroma. Downregulation of proteoglycans detected by EM in the Klf4CN stroma was confirmed by FACE and immunoblot analysis. Q-RT-PCR showed that, whereas the Klf4CN corneal proteoglycan transcript levels remained unchanged, matrix metalloproteinase (MMP) transcript levels were significantly upregulated. CONCLUSIONS The Klf4CN corneal stromal edema is characterized by increased collagen interfibrillar spacing and increased diameter of individual fibrils. The stroma also exhibits reduced interfibrillar proteoglycans throughout, which is possibly caused by increased expression of MMPs.


PLOS ONE | 2017

Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding

Andrew Hertsenberg; Golnar Shojaati; Martha L. Funderburgh; Mary M. Mann; Yiqin Du; James L. Funderburgh

Corneal scarring limits vision for millions of individuals worldwide. Corneal transplantation (keratoplasty) is the standard of care for corneal opacity; however, it bears the risk of graft rejection and infection and is not universally available. Stem cell therapy holds promise as an alternative to keratoplasty. Stem cells from human corneal stroma (CSSC) induce regeneration of transparent corneal tissue in a mouse wound-healing model. In this study we investigated the mechanism by which CSSC prevent deposition of fibrotic tissue. Infiltration by CD11b+/Ly6G+ neutrophils and myeloperoxidase expression were increased in corneas 24 hr after corneal wounding but were reduced in CSSC-treated wounds. Secretion of TSG-6, a protein known to regulate neutrophil migration, was up-regulated in CSSC in response to TNFα and as CSSC differentiate to keratocytes. In vivo, wounded mouse corneas treated with CSSC contained human TSG-6. Inhibition of neutrophil infiltration into cornea by CSSC was reversed when TSG-6 expression was knocked down using siRNA. Silencing of TSG-6 expression in CSSC reduced their ability to block scarring and the expression of mRNA for fibrosis-associated proteins collagen III, tenascin C, and smooth muscle actin in wounded corneas. Neutropenic mice exhibited a significant reduction in corneal scarring and fibrotic mRNA expression 2 weeks after wounding. These results support the conclusion that neutrophil infiltration is an essential event in the fibrotic response to corneal damage and that prevention of scarring by CSSC is mediated by secretion of TSG-6 by these cells.

Collaboration


Dive into the Mary M. Mann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiqin Du

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Danny S. Roh

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Guo

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge