Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martha Zakrzewski is active.

Publication


Featured researches published by Martha Zakrzewski.


Biotechnology for Biofuels | 2015

Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions

Yvonne Stolze; Martha Zakrzewski; Irena Maus; Felix Gregor Eikmeyer; Sebastian Jaenicke; Nils Rottmann; Clemens Siebner; Alfred Pühler; Andreas Schlüter

BackgroundDecomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools.ResultsHigh-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2T revealed that dominant methanogens within the dry fermentation process were highly related to the reference.ConclusionsAlthough process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2T dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.


The Journal of Infectious Diseases | 2014

Impact of Experimental Hookworm Infection on the Human Gut Microbiota

Cinzia Cantacessi; Paul Giacomin; John Croese; Martha Zakrzewski; Javier Sotillo; Leisa McCann; Matthew J. Nolan; Makedonka Mitreva; Lutz Krause; Alex Loukas

The interactions between gastrointestinal parasitic helminths and commensal bacteria are likely to play a pivotal role in the establishment of host-parasite cross-talk, ultimately shaping the development of the intestinal immune system. However, little information is available on the impact of infections by gastrointestinal helminths on the bacterial communities inhabiting the human gut. We used 16S rRNA gene amplification and pyrosequencing to characterize, for the first time to our knowledge, the differences in composition and relative abundance of fecal microbial communities in human subjects prior to and following experimental infection with the blood-feeding intestinal hookworm, Necator americanus. Our data show that, although hookworm infection leads to a minor increase in microbial species richness, no detectable effect is observed on community structure, diversity or relative abundance of individual bacterial species.


Bioinformatics | 2016

Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions

Martha Zakrzewski; Carla Proietti; Jonathan J. Ellis; Shihab Hasan; Marie-Jo Brion; Bernard Berger; Lutz Krause

Abstract Calypso is an easy‐to‐use online software suite that allows non‐expert users to mine, interpret and compare taxonomic information from metagenomic or 16S rDNA datasets. Calypso has a focus on multivariate statistical approaches that can identify complex environment‐microbiome associations. The software enables quantitative visualizations, statistical testing, multivariate analysis, supervised learning, factor analysis, multivariable regression, network analysis and diversity estimates. Comprehensive help pages, tutorials and videos are provided via a wiki page. Availability and Implementation: The web‐interface is accessible via http://cgenome.net/calypso/. The software is programmed in Java, PERL and R and the source code is available from Zenodo (https://zenodo.org/record/50931). The software is freely available for non‐commercial users. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


European Respiratory Journal | 2014

Pyrosequencing reveals transient cystic fibrosis lung microbiome changes with intravenous antibiotics

Daniel J. Smith; Alison C. Badrick; Martha Zakrzewski; Lutz Krause; Scott C. Bell; Gregory J. Anderson; Dw Reid

Chronic airway infection in adults with cystic fibrosis (CF) is polymicrobial and the impact of intravenous antibiotics on the bacterial community composition is poorly understood. We employed culture-independent molecular techniques to explore the early effects of i.v. antibiotics on the CF airway microbiome. DNA was extracted from sputum samples collected from adult subjects with CF at three time-points (before starting treatment, and at day 3 and day 8–10 of i.v. antibiotics) during treatment of an infective pulmonary exacerbation. Microbial community profiles were derived through analysis of bacterial-derived 16S ribosomal RNA by pyrosequencing and changes over time were compared. 59 sputum samples were collected during 24 pulmonary exacerbations from 23 subjects. Between treatment onset and day 3 there was a significant reduction in the relative abundance of Pseudomonas and increased microbial diversity. By day 8–10, bacterial community composition was similar to pre-treatment. Changes in community composition did not predict improvements in lung function. The relative abundance of Pseudomonas falls rapidly in subjects with CF receiving i.v. antibiotic treatment for a pulmonary exacerbation and is accompanied by an increase in overall microbial diversity. However, this effect is not maintained beyond the first week of treatment. Changes in the CF microbiome in response to i.v. antibiotics are not sustained despite ongoing antibiotic pressure http://ow.ly/wzYyg


PLOS Neglected Tropical Diseases | 2014

Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model.

Pearl M. Swe; Martha Zakrzewski; Andrew Kelly; Lutz Krause

Background The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei) are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. Methodology/Principal Findings In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. Conclusions/Significance This is the first experimental in vivo evidence supporting previous assumptions that establishment of pathogens follow scabies infection. Our findings provide an explanation for a biologically important aspect of the disease pathogenesis. The methods developed from this pig trial will serve as a guide to analyze human clinical samples. Studies building on this will offer implications for development of novel intervention strategies against the mites and the secondary infections.


Scientific Reports | 2018

Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok

Martha Zakrzewski; Gordana Rašić; Jonathan M. Darbro; Lutz Krause; Yee S. Poo; Igor Filipović; Rhys Parry; Sassan Asgari; Greg Devine; Andreas Suhrbier

Medically important arboviruses such as dengue, Zika, and chikungunya viruses are primarily transmitted by the globally distributed mosquito Aedes aegypti. Increasing evidence suggests that transmission can be influenced by mosquito viromes. Herein RNA-Seq was used to characterize RNA metaviromes of wild-caught Ae. aegypti from Bangkok (Thailand) and from Cairns (Australia). The two mosquito populations showed a high degree of similarity in their viromes. BLAST searches of assembled contigs suggest up to 27 insect-specific viruses may infect Ae. aegypti, with up to 23 of these currently uncharacterized and up to 16 infecting mosquitoes from both Cairns and Bangkok. Three characterized viruses dominated, Phasi Charoen-like virus, Humaita-Tubiacanga virus and Cell fusing agent virus, and comparisons with other available RNA-Seq datasets suggested infection levels with these viruses may vary in laboratory-reared mosquitoes. As expected, mosquitoes from Bangkok showed higher mitochondrial diversity and carried alleles associated with knock-down resistance to pyrethroids. Blood meal reads primarily mapped to human genes, with a small number also showing homology with rat/mouse and dog genes. These results highlight the wide spectrum of data that can be obtained from such RNA-Seq analyses, and suggests differing viromes may need to be considered in arbovirus vector competence studies.


Parasites & Vectors | 2017

Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets

Deepani D. Fernando; Edward J. Marr; Martha Zakrzewski; Simone L. Reynolds; Stewart T. G. Burgess

BackgroundScabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools.MethodsWe performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi).ResultsWe provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls.ConclusionsA series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.


Parasites & Vectors | 2018

Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei

Deepani D. Fernando; Simone L. Reynolds; Martha Zakrzewski; Ehtesham Mofiz; Anthony T. Papenfuss; Deborah C. Holt

BackgroundScabies is worldwide one of the most common, yet neglected, parasitic skin infections, affecting a wide range of mammals including humans. Limited treatment options and evidence of emerging mite resistance against the currently used drugs drive our research to explore new therapeutic candidates. Previously, we discovered a multicopy family of genes encoding cysteine proteases with their catalytic sites inactivated by mutation (SMIPP-Cs). This protein family is unique in parasitic scabies mites and is absent in related non-burrowing mites. We postulated that the SMIPP-Cs have evolved as an adaptation to the parasitic lifestyle of the scabies mite. To formulate testable hypotheses for their functions and to propose possible strategies for translational research we investigated whether the SMIPP-Cs are common to all scabies mite varieties and where within the mite body as well as when throughout the parasitic life-cycle they are expressed.ResultsSMIPP-C sequences from human, pig and dog mites were analysed bioinformatically and the phylogenetic relationships between the SMIPP-C multi-copy gene families of human, pig and dog mites were established. Results suggest that amplification of the SMIPP-C genes occurred in a common ancestor and individual genes evolved independently in the different mite varieties. Recombinant human mite SMIPP-C proteins were produced and used for murine polyclonal antibody production. Immunohistology on skin sections from human patients localised the SMIPP-Cs in the mite gut and in mite faeces within in the epidermal skin burrows. SMIPP-C transcription into mRNA in different life stages was assessed in human and pig mites by reverse transcription followed by droplet digital PCR (ddPCR). High transcription levels of SMIPP-C genes were detected in the adult female life stage in comparison to all other life stages.ConclusionsThe fact that the SMIPP-Cs are unique to three Sarcoptes varieties, present in all burrowing life stages and highly expressed in the digestive system of the infective adult female life stage may highlight an essential role in parasitism. As they are excreted from the gut in scybala they presumably are able to interact or interfere with host proteins present in the epidermis.


Nature Communications | 2018

NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease

Hazel Tye; Chien-Hsiung Yu; Lisa A. Simms; Marcel R. de Zoete; Man Lyang Kim; Martha Zakrzewski; Jocelyn Sietsma Penington; Cassandra R. Harapas; Fernando Souza-Fonseca-Guimaraes; Leesa F. Wockner; Adele Preaudet; Lisa A. Mielke; Stephen Wilcox; Yasunori Ogura; Sinead C. Corr; Komal Kanojia; Konstantinos A. Kouremenos; David P. De Souza; Malcolm J. McConville; Richard A. Flavell; Motti Gerlic; Benjamin T. Kile; Anthony T. Papenfuss; Tracy Putoczki; Graham L. Radford-Smith; Seth L. Masters

Anti-microbial signaling pathways are normally triggered by innate immune receptors when detecting pathogenic microbes to provide protective immunity. Here we show that the inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting beneficial, butyrate-producing Clostridiales in the gut. The colitis-protective effects of Nlrp1 deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate supplementation in wild-type mice. Moreover, an activating mutation in Nlrp1a increases IL-18 and IFNγ production, and decreases colonic butyrate to exacerbate colitis. We also show that, in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is associated with increased IFN-γ. In this context, NLRP1, IL-18 or IFN-γ expression negatively correlates with the abundance of Clostridiales in human rectal mucosal biopsies. Our data identify the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing commensals, which therefore promotes inflammatory bowel disease.The inflammasome is normally activated by pathogens to induce tissue inflammation. Here the authors show that, in mouse experimental colitis models, Nlrp1 inflammasome sensor activates IL-18 to reduce beneficial colonic Clostridiales species, thereby decreasing microbial butyrate and its protective effects on colitis.


European Journal of Nutrition | 2018

Vitamin D and the gut microbiome: a systematic review of in vivo studies

Mary Waterhouse; Bronwyn Hope; Lutz Krause; Mark Morrison; Melinda M. Protani; Martha Zakrzewski; Rachel E. Neale

PurposeVariation in the human microbiome has been linked with a variety of physiological functions, including immune regulation and metabolism and biosynthesis of vitamins, hormones, and neurotransmitters. Evidence for extraskeletal effects of vitamin D has been accruing and it has been suggested that the effect of vitamin D on health is partially mediated through the microbiome. We aimed to critically evaluate the evidence linking vitamin D and the gastrointestinal microbiome.MethodsWe systematically searched the Embase, Web of Science, PubMed and CINAHL databases, including peer-reviewed publications that reported an association between a measure of vitamin D and the gastrointestinal microbiome in humans or experimental animals.ResultsWe included 10 mouse and 14 human studies. Mouse studies compared mice fed diets containing different levels of vitamin D (usually high versus low), or vitamin D receptor knockout or Cyp27B1 knockout with wild-type mice. Five mouse studies reported an increase in Bacteroidetes (or taxa within that phylum) in the low vitamin D diet or gene knockout group. Human studies were predominantly observational; all but two of the included studies found some association between vitamin D and the gut microbiome, but the nature of differences observed varied across studies.ConclusionsDespite substantial heterogeneity, we found evidence to support the hypothesis that vitamin D influences the composition of the gastrointestinal microbiome. However, the research is limited, having been conducted either in mice or in mostly small, selected human populations. Future research in larger population-based studies is needed to fully understand the extent to which vitamin D modulates the microbiome.

Collaboration


Dive into the Martha Zakrzewski's collaboration.

Top Co-Authors

Avatar

Lutz Krause

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Anthony T. Papenfuss

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Graham L. Radford-Smith

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Simms

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Simone L. Reynolds

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adele Preaudet

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Alison C. Badrick

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Allison Brown

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andreas Suhrbier

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge