Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martijn P. van Iersel is active.

Publication


Featured researches published by Martijn P. van Iersel.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.


PLOS Biology | 2008

WikiPathways: pathway editing for the people

Alexander R. Pico; Thomas Kelder; Martijn P. van Iersel; Kristina Hanspers; Bruce R. Conklin; Chris T. Evelo

WikiPathways provides a collaborative platform for creating, updating, and sharing pathway diagrams and serves as an example of content curation by the biology community.


Nucleic Acids Research | 2012

WikiPathways: building research communities on biological pathways

Thomas Kelder; Martijn P. van Iersel; Kristina Hanspers; Martina Kutmon; Bruce R. Conklin; Chris T. Evelo; Alexander R. Pico

Here, we describe the development of WikiPathways (http://www.wikipathways.org), a public wiki for pathway curation, since it was first published in 2008. New features are discussed, as well as developments in the community of contributors. New features include a zoomable pathway viewer, support for pathway ontology annotations, the ability to mark pathways as private for a limited time and the availability of stable hyperlinks to pathways and the elements therein. WikiPathways content is freely available in a variety of formats such as the BioPAX standard, and the content is increasingly adopted by external databases and tools, including Wikipedia. A recent development is the use of WikiPathways as a staging ground for centrally curated databases such as Reactome. WikiPathways is seeing steady growth in the number of users, page views and edits for each pathway. To assess whether the community curation experiment can be considered successful, here we analyze the relation between use and contribution, which gives results in line with other wiki projects. The novel use of pathway pages as supplementary material to publications, as well as the addition of tailored content for research domains, is expected to stimulate growth further.


BMC Bioinformatics | 2008

Presenting and exploring biological pathways with PathVisio

Martijn P. van Iersel; Thomas Kelder; Alexander R. Pico; Kristina Hanspers; Susan L. Coort; Bruce R. Conklin; Chris T. Evelo

BackgroundBiological pathways are a useful abstraction of biological concepts, and software tools to deal with pathway diagrams can help biological research. PathVisio is a new visualization tool for biological pathways that mimics the popular GenMAPP tool with a completely new Java implementation that allows better integration with other open source projects. The GenMAPP MAPP file format is replaced by GPML, a new XML file format that provides seamless exchange of graphical pathway information among multiple programs.ResultsPathVisio can be combined with other bioinformatics tools to open up three possible uses: visual compilation of biological knowledge, interpretation of high-throughput expression datasets, and computational augmentation of pathways with interaction information. PathVisio is open source software and available at http://www.pathvisio.org.ConclusionPathVisio is a graphical editor for biological pathways, with flexibility and ease of use as primary goals.


PLOS Computational Biology | 2015

PathVisio 3: an extendable pathway analysis toolbox.

Martina Kutmon; Martijn P. van Iersel; Anwesha Bohler; Thomas Kelder; Nuno Nunes; Alexander R. Pico; Chris T. Evelo

PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.


BMC Bioinformatics | 2010

The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services

Martijn P. van Iersel; Alexander R. Pico; Thomas Kelder; Jianjiong Gao; Isaac Ho; Kristina Hanspers; Bruce R. Conklin; Chris T. Evelo

BackgroundMany complementary solutions are available for the identifier mapping problem. This creates an opportunity for bioinformatics tool developers. Tools can be made to flexibly support multiple mapping services or mapping services could be combined to get broader coverage. This approach requires an interface layer between tools and mapping services.ResultsHere we present BridgeDb, a software framework for gene, protein and metabolite identifier mapping. This framework provides a standardized interface layer through which bioinformatics tools can be connected to different identifier mapping services. This approach makes it easier for tool developers to support identifier mapping. Mapping services can be combined or merged to support multi-omics experiments or to integrate custom microarray annotations. BridgeDb provides its own ready-to-go mapping services, both in webservice and local database forms. However, the framework is intended for customization and adaptation to any identifier mapping service. BridgeDb has already been integrated into several bioinformatics applications.ConclusionBy uncoupling bioinformatics tools from mapping services, BridgeDb improves capability and flexibility of those tools. All described software is open source and available at http://www.bridgedb.org.


BMC Systems Biology | 2013

Path2Models: large-scale generation of computational models from biochemical pathway maps

Finja Büchel; Nicolas Rodriguez; Neil Swainston; Clemens Wrzodek; Tobias Czauderna; Roland Keller; Florian Mittag; Michael Schubert; Mihai Glont; Martin Golebiewski; Martijn P. van Iersel; Sarah M. Keating; Matthias Rall; Michael Wybrow; Henning Hermjakob; Michael Hucka; Douglas B. Kell; Wolfgang Müller; Pedro Mendes; Andreas Zell; Claudine Chaouiya; Julio Saez-Rodriguez; Falk Schreiber; Camille Laibe; Andreas Dräger; Nicolas Le Novère

BackgroundSystems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.ResultsTo increase the efficiency of model creation, the Path2Models project has automatically generated mathematical models from pathway representations using a suite of freely available software. Data sources include KEGG, BioCarta, MetaCyc and SABIO-RK. Depending on the source data, three types of models are provided: kinetic, logical and constraint-based. Models from over 2 600 organisms are encoded consistently in SBML, and are made freely available through BioModels Database at http://www.ebi.ac.uk/biomodels-main/path2models. Each model contains the list of participants, their interactions, the relevant mathematical constructs, and initial parameter values. Most models are also available as easy-to-understand graphical SBGN maps.ConclusionsTo date, the project has resulted in more than 140 000 freely available models. Such a resource can tremendously accelerate the development of mathematical models by providing initial starting models for simulation and analysis, which can be subsequently curated and further parameterized.


PLOS ONE | 2009

Mining Biological Pathways Using WikiPathways Web Services

Thomas Kelder; Alexander R. Pico; Kristina Hanspers; Martijn P. van Iersel; Chris T. Evelo; Bruce R. Conklin

WikiPathways is a platform for creating, updating, and sharing biological pathways [1]. Pathways can be edited and downloaded using the wiki-style website. Here we present a SOAP web service that provides programmatic access to WikiPathways that is complementary to the website. We describe the functionality that this web service offers and discuss several use cases in detail. Exposing WikiPathways through a web service opens up new ways of utilizing pathway information and assisting the community curation process.


BMC Systems Biology | 2013

SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools

Claudine Chaouiya; Duncan Bérenguier; Sarah M. Keating; Aurélien Naldi; Martijn P. van Iersel; Nicolas Rodriguez; Andreas Dräger; Finja Büchel; Thomas Cokelaer; Bryan Kowal; Benjamin Wicks; Emanuel Gonçalves; Julien Dorier; Michel Page; Pedro T. Monteiro; Axel von Kamp; Ioannis Xenarios; Hidde de Jong; Michael Hucka; Steffen Klamt; Denis Thieffry; Nicolas Le Novère; Julio Saez-Rodriguez; Tomáš Helikar

BackgroundQualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing.ResultsWe present the Systems Biology Markup Language (SBML) Qualitative Models Package (“qual”), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models.ConclusionsSBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.


Bioinformatics | 2012

Software support for SBGN maps

Martijn P. van Iersel; Alice Villéger; Tobias Czauderna; Sarah E. Boyd; Frank Bergmann; Augustin Luna; Emek Demir; Anatoly Sorokin; Ugur Dogrusoz; Yukiko Matsuoka; Akira Funahashi; Mirit I. Aladjem; Huaiyu Mi; Stuart L. Moodie; Hiroaki Kitano; Nicolas Le Novère; Falk Schreiber

Motivation: LibSBGN is a software library for reading, writing and manipulating Systems Biology Graphical Notation (SBGN) maps stored using the recently developed SBGN-ML file format. The library (available in C++ and Java) makes it easy for developers to add SBGN support to their tools, whereas the file format facilitates the exchange of maps between compatible software applications. The library also supports validation of maps, which simplifies the task of ensuring compliance with the detailed SBGN specifications. With this effort we hope to increase the adoption of SBGN in bioinformatics tools, ultimately enabling more researchers to visualize biological knowledge in a precise and unambiguous manner. Availability and implementation: Milestone 2 was released in December 2011. Source code, example files and binaries are freely available under the terms of either the LGPL v2.1+ or Apache v2.0 open source licenses from http://libsbgn.sourceforge.net. Contact: [email protected]

Collaboration


Dive into the Martijn P. van Iersel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emek Demir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Huaiyu Mi

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl F. Schaefer

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge