Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin A. Berliner is active.

Publication


Featured researches published by Martin A. Berliner.


Cancer Research | 2008

Antitumor Activity and Pharmacology of a Selective Focal Adhesion Kinase Inhibitor, PF-562,271

Walter Gregory Roberts; Ethan Ung; Pamela Whalen; Beth Cooper; Catherine A. Hulford; Christofer Autry; Daniel T. Richter; Earling Emerson; Jing Lin; John Charles Kath; Kevin Coleman; Lili Yao; Luis Martinez-Alsina; Marianne Lorenzen; Martin A. Berliner; Michael Joseph Luzzio; Nandini Chaturbhai Patel; Erika Schmitt; Susan Deborah Lagreca; Jitesh P. Jani; Matt Wessel; Eric S. Marr; Matt Griffor; Felix Vajdos

Cancer cells are characterized by the ability to grow in an anchorage-independent manner. The activity of the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is thought to contribute to this phenotype. FAK localizes in focal adhesion plaques and has a role as a scaffolding and signaling protein for other adhesion molecules. Recent studies show a strong correlation between increased FAK expression and phosphorylation status and the invasive phenotype of aggressive human tumors. PF-562,271 is a potent, ATP-competitive, reversible inhibitor of FAK and Pyk2 catalytic activity with a IC(50) of 1.5 and 14 nmol/L, respectively. Additionally, PF-562,271 displayed robust inhibition in an inducible cell-based assay measuring phospho-FAK with an IC(50) of 5 nmol/L. PF-562,271 was evaluated against multiple kinases and displays >100x selectivity against a long list of nontarget kinases. PF-562,271 inhibits FAK phosphorylation in vivo in a dose-dependent fashion (calculated EC(50) of 93 ng/mL, total) after p.o. administration to tumor-bearing mice. In vivo inhibition of FAK phosphorylation (>50%) was sustained for >4 hours with a single p.o. dose of 33 mg/kg. Antitumor efficacy and regressions were observed in multiple human s.c. xenograft models. No weight loss, morbidity, or mortality were observed in any in vivo experiment. Tumor growth inhibition was dose and drug exposure dependent. Taken together, these data show that kinase inhibition with an ATP-competitive small molecule inhibitor of FAK decreases the phospho-status in vivo, resulting in robust antitumor activity.


MedChemComm | 2011

Designing glucokinase activators with reduced hypoglycemia risk: discovery of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as a clinical candidate for the treatment of type 2 diabetes mellitus

Jeffrey A. Pfefferkorn; Angel Guzman-Perez; Peter J. Oates; John Litchfield; Gary E. Aspnes; Arindrajit Basak; John William Benbow; Martin A. Berliner; Jianwei Bian; Chulho Choi; Kevin Daniel Freeman-Cook; Jeffrey W. Corbett; Mary Theresa Didiuk; Joshua R. Dunetz; Kevin J. Filipski; William M. Hungerford; Christopher S. Jones; Kapil Karki; Anthony Lai Ling; Jian-Cheng Li; Leena Patel; Christian Perreault; Hud Risley; James Saenz; Wei Song; Meihua Tu; Robert J. Aiello; Karen Atkinson; Nicole Barucci; David A. Beebe

Glucokinase is a key regulator of glucose homeostasis and small molecule activators of this enzyme represent a promising opportunity for the treatment of Type 2 diabetes. Several glucokinase activators have advanced to clinical studies and demonstrated promising efficacy; however, many of these early candidates also revealed hypoglycemia as a key risk. In an effort to mitigate this hypoglycemia risk while maintaining the promising efficacy of this mechanism, we have investigated a series of substituted 2-methylbenzofurans as “partial activators” of the glucokinase enzyme leading to the identification of N,N-dimethyl-5-(2-methyl-6-((5-methylpyrazin-2-yl)-carbamoyl)benzofuran-4-yloxy)pyrimidine-2-carboxamide as an early development candidate.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of an intravenous hepatoselective glucokinase activator for the treatment of inpatient hyperglycemia.

Benjamin D. Stevens; John Litchfield; Jeffrey A. Pfefferkorn; Karen Atkinson; Christian Perreault; Paul Amor; Kevin B. Bahnck; Martin A. Berliner; Jessica Calloway; Anthony A. Carlo; David R. Derksen; Kevin J. Filipski; Mike Gumkowski; Charanjeet Jassal; Margit MacDougall; Brendan John Murphy; Paul Nkansah; John C. Pettersen; Charles J. Rotter; Yan Zhang

Glucokinase (hexokinase IV) continues to be a compelling target for the treatment of type 2 diabetes given the wealth of supporting human genetics data and numerous reports of robust clinical glucose lowering in patients treated with small molecule allosteric activators. Recent work has demonstrated the ability of hepatoselective activators to deliver glucose lowering efficacy with minimal risk of hypoglycemia. While orally administered agents require a considerable degree of passive permeability to promote suitable exposures, there is no such restriction on intravenously delivered drugs. Therefore, minimization of membrane diffusion in the context of an intravenously agent should ensure optimal hepatic targeting and therapeutic index. This work details the identification a hepatoselective GKA exhibiting the aforementioned properties.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery and synthesis of novel 4-aminopyrrolopyrimidine Tie-2 kinase inhibitors for the treatment of solid tumors.

Jean Beebe; Martin A. Berliner; Vincent Bernardo; Merin Boehm; Gary Borzillo; Tracey Clark; Bruce D. Cohen; Richard D. Connell; Heather N. Frost; Deborah Gordon; William M. Hungerford; Shefali Kakar; Aaron Kanter; Nandell F. Keene; Elizabeth Knauth; Susan Deborah Lagreca; Yong Lu; Louis Martinez-Alsina; Matthew A. Marx; Joel Morris; Nandini Chaturbhai Patel; Doug Savage; Cathy Soderstrom; Carl Thompson; George T. Tkalcevic; Norma Jacqueline Tom; Felix Vajdos; James J. Valentine; Patrick W. Vincent; Matthew D. Wessel

The synthesis and biological evaluation of novel Tie-2 kinase inhibitors are presented. Based on the pyrrolopyrimidine chemotype, several new series are described, including the benzimidazole series by linking a benzimidazole to the C5-position of the 4-amino-pyrrolopyrimidine core and the ketophenyl series synthesized by incorporating a ketophenyl group to the C5-position. Medicinal chemistry efforts led to potent Tie-2 inhibitors. Compound 15, a ketophenyl pyrrolopyrimidine urea analog with improved physicochemical properties, demonstrated favorable in vitro attributes as well as dose responsive and robust oral tumor growth inhibition in animal models.


Molecular Cancer Therapeutics | 2009

Abstract A86: Design, synthesis, and SAR of focal adhesion kinase (FAK) inhibitors

Walter Gregory Roberts; Martin A. Berliner; Kevin Coleman; Erling Emerson; Matt Griffor; Catherine A. Hulford; Jitesh P. Jani; John Charles Kath; Susan Deborah Lagreca; Jing Lin; Marianne Lorenzen; Eric S. Marr; Luis Martinez-Alsina; Nandini Chaturbhai Patel; Daniel T. Richter; Erika Roberts; Christopher Autry; Ethan Ung; Vajdos Felix; Beth Cooper Vetelino; Matthew D. Wessel; Pamela Whalen; Huiping Xu; Lili Yao

Focal adhesion kinase (FAK) is a non‐tyrosine kinase that localizes to focal adhesion plaques. It is activated in response to intergin binding to cellular ligands and when phosphorylated inhibits anoikis allowing for anchorage independent cell growth. Recent studies have shown increased FAK expression and phosphorylation status in many types of invasive and aggressive human tumors strongly suggesting FAK is a possible target for anticancer chemotherapy. Literature, in house HTS and de novo studies identified 2, 4‐diaminopyrimidines as potent FAK inhibitors. Early SAR efforts quickly determined that smaller substituents, particularly CF3, were optimal in the C5 position. Parallel medicinal chemistry strategies were executed for the C2 and C4 positions. These studies suggested that substituted aryl and fused heteroaryl groups at the C2 position in conjunction with substituted phenyl and heterocycles at the C4 position imparted optimum activity and metabolic stability. Inhibitor‐FAK co‐crystal structures were utilized to guide in the SAR strategy around the 2, 4‐diaminopyrimidine template which afforded several lead compounds. The team9s effort culminated in the advancement of PF‐562,271 as a potent and reversible inhibitor of FAK (kinase IC50 of 2 nM and cell IC50 of 5 nM) that is > 100x selective against a long list of non‐target kinases. In summary, detailed SAR studies were executed on the 2, 4‐diaminopyrimidine templates that produced potent inhibitors of FAK with improved ADME properties, and identified a novel and potent series of FAK inhibitors that are selective against most other kinases and have shown activity in clinical trials. This poster will present design, synthesis, challenging chemistry, optimization, and complete inhibitor chemical structures of lead analogs. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):A86.


ChemInform | 2005

Alkenyl and Aryl Chalcogenides: Oxygen-based Functional Groups

C. K.‐F. Chiu; Martin A. Berliner; Z. B. Li

Current methods for the preparation of alkenyl and aryl compounds bound at an sp2-carbon to oxygen are described. Individual sections summarize literature methods, from the period 1993–2003 for the synthesis of enols, phenols, enol ethers and esters, phenyl ethers and esters, enolates, phenolates, and alkenyl and aryl esters of nitrogen, phosphorus, and sulfur. Short sections on alkenyl and aryl peroxides and hypohalites are also included.


Tetrahedron Letters | 2006

Development of nonproprietary phosphine ligands for the Pd-catalyzed amination reaction

Robert A. Singer; Michael Dore; Janice E. Sieser; Martin A. Berliner


Journal of Organic Chemistry | 2006

Aqueous Phosphoric Acid as a Mild Reagent for Deprotection of tert-Butyl Carbamates, Esters, and Ethers

Bryan Li; Martin A. Berliner; Richard A. Buzon; Charles K.-F. Chiu; Stephen T. Colgan; Takushi Kaneko; Nandell F. Keene; William Kissel; Tung Le; Kyle R. Leeman; Brian Marquez; Ronald Morris; Lisa Newell; Silke Wunderwald; Michael Witt; John Weaver; and Zhijun Zhang; Zhongli Zhang


Organic Process Research & Development | 2011

Use of an Iridium-Catalyzed Redox-Neutral Alcohol-Amine Coupling on Kilogram Scale for the Synthesis of a GlyT1 Inhibitor

Martin A. Berliner; Stéphane P. A. Dubant; Teresa W. Makowski; Karl Ng; Barbara J. Sitter; Carrie Wager; Yinsheng Zhang


Bioorganic & Medicinal Chemistry Letters | 2006

Potent, selective pyrimidinetrione-based inhibitors of MMP-13

Lawrence A. Reiter; Kevin Daniel Freeman-Cook; Christopher S. Jones; Gary J. Martinelli; Amy S. Antipas; Martin A. Berliner; Kaushik Datta; James T. Downs; James D. Eskra; Michael D. Forman; Elaine M. Greer; Roberto E. Guzman; Joel R. Hardink; Fouad Janat; Nandell F. Keene; Ellen R. Laird; Jennifer Liras; Lori L. Lopresti-Morrow; Peter G. Mitchell; Jayvardhan Pandit; Donald G. Robertson; Diana Sperger; Marcie L. Vaughn-Bowser; Darra M. Waller; Sue A. Yocum

Collaboration


Dive into the Martin A. Berliner's collaboration.

Researchain Logo
Decentralizing Knowledge