Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin B. Richards is active.

Publication


Featured researches published by Martin B. Richards.


American Journal of Human Genetics | 2000

Tracing European Founder Lineages in the Near Eastern mtDNA Pool

Martin B. Richards; Vincent Macaulay; Eileen Hickey; Emilce Vega; Bryan Sykes; Valentina Guida; Chiara Rengo; Daniele Sellitto; Fulvio Cruciani; Toomas Kivisild; Richard Villems; Mark G. Thomas; Serge Rychkov; Oksana Rychkov; Yuri Rychkov; Mukaddes Gölge; Dimitar Dimitrov; Emmeline W. Hill; Daniel G. Bradley; Valentino Romano; Francesco Calì; Giuseppe Vona; Andrew G. Demaine; S.S. Papiha; Costas Triantaphyllidis; Gheorghe Stefanescu; Jiři Hatina; Michele Belledi; Anna Di Rienzo; Andrea Novelletto

Founder analysis is a method for analysis of nonrecombining DNA sequence data, with the aim of identification and dating of migrations into new territory. The method picks out founder sequence types in potential source populations and dates lineage clusters deriving from them in the settlement zone of interest. Here, using mtDNA, we apply the approach to the colonization of Europe, to estimate the proportion of modern lineages whose ancestors arrived during each major phase of settlement. To estimate the Palaeolithic and Neolithic contributions to European mtDNA diversity more accurately than was previously achievable, we have now extended the Near Eastern, European, and northern-Caucasus databases to 1,234, 2, 804, and 208 samples, respectively. Both back-migration into the source population and recurrent mutation in the source and derived populations represent major obstacles to this approach. We have developed phylogenetic criteria to take account of both these factors, and we suggest a way to account for multiple dispersals of common sequence types. We conclude that (i) there has been substantial back-migration into the Near East, (ii) the majority of extant mtDNA lineages entered Europe in several waves during the Upper Palaeolithic, (iii) there was a founder effect or bottleneck associated with the Last Glacial Maximum, 20,000 years ago, from which derives the largest fraction of surviving lineages, and (iv) the immigrant Neolithic component is likely to comprise less than one-quarter of the mtDNA pool of modern Europeans.


American Journal of Human Genetics | 1999

The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs.

Vincent Macaulay; Martin B. Richards; Eileen Hickey; Emilce Vega; Fulvio Cruciani; Valentina Guida; Rosaria Scozzari; Batsheva Bonne-Tamir; Bryan Sykes; Antonio Torroni

Variation in the human mitochondrial genome (mtDNA) is now routinely described and used to infer the histories of peoples, by means of one of two procedures, namely, the assaying of RFLPs throughout the genome and the sequencing of parts of the control region (CR). Using 95 samples from the Near East and northwest Caucasus, we present an analysis based on both systems, demonstrate their concordance, and, using additional available information, present the most refined phylogeny to date of west Eurasian mtDNA. We describe and apply a nomenclature for mtDNA clusters. Hypervariable nucleotides are identified, and the relative mutation rates of the two systems are evaluated. We point out where ambiguities remain. The identification of signature mutations for each cluster leads us to apply a hierarchical scheme for determining the cluster composition of a sample of Berber speakers, previously analyzed only for CR variation. We show that the main indigenous North African cluster is a sister group to the most ancient cluster of European mtDNAs, from which it diverged approximately 50,000 years ago.


American Journal of Human Genetics | 2002

The Making of the African mtDNA Landscape

Antonio Salas; Martin B. Richards; Tomás De la Fe; Marı́a-Victoria Lareu; Beatriz Sobrino; Paula Sánchez-Diz; Vincent Macaulay; Angel Carracedo

Africa presents the most complex genetic picture of any continent, with a time depth for mitochondrial DNA (mtDNA) lineages >100,000 years. The most recent widespread demographic shift within the continent was most probably the Bantu dispersals, which archaeological and linguistic evidence suggest originated in West Africa 3,000-4,000 years ago, spreading both east and south. Here, we have carried out a thorough phylogeographic analysis of mtDNA variation in a total of 2,847 samples from throughout the continent, including 307 new sequences from southeast African Bantu speakers. The results suggest that the southeast Bantu speakers have a composite origin on the maternal line of descent, with approximately 44% of lineages deriving from West Africa, approximately 21% from either West or Central Africa, approximately 30% from East Africa, and approximately 5% from southern African Khoisan-speaking groups. The ages of the major founder types of both West and East African origin are consistent with the likely timing of Bantu dispersals, with those from the west somewhat predating those from the east. Despite this composite picture, the southeastern African Bantu groups are indistinguishable from each other with respect to their mtDNA, suggesting that they either had a common origin at the point of entry into southeastern Africa or have undergone very extensive gene flow since.


Annals of Human Genetics | 1998

Phylogeography of mitochondrial DNA in western Europe

Martin B. Richards; V. A. Macaulay; Hans-Juergen Bandelt; Bryan Sykes

For most of the past century, prehistorians have had to rely on the fossil and archaeological records in order to reconstruct the past. In the last few decades, this evidence has been substantially supplemented from classical human genetics. More recently, phylogenetic analyses of DNA sequences that incorporate geographical information have provided a high‐resolution tool for the investigation of prehistoric demographic events, such as founder effects and population expansions. These events can be dated using a molecular clock when the mutation rate and founder haplotypes are known. We have previously applied such methods to sequence data from the mitochondrial DNA control region, to suggest that most extant mitochondrial sequences in western Europe have a local ancestry in the Early Upper Palaeolithic, with a smaller proportion arriving from the Near East in the Neolithic. Here, we describe a cladistic notation for mitochondrial variation and expand upon our earlier analysis to present a more detailed portrait of the European mitochondrial record.


American Journal of Human Genetics | 1997

Mitochondrial Footprints of Human Expansions in Africa

Elizabeth Watson; Peter Forster; Martin B. Richards; Hans-JLurgen Bandelt

mtDNA studies support an African origin for modern Eurasians, but expansion events within Africa have not previously been investigated. We have therefore analyzed 407 mtDNA control-region sequences from 13 African ethnic groups. A number of sequences (13%) were highly divergent and coalesced on the mitochondrial Eve in Africans. The remaining sequences also ultimately coalesced on this sequence but fell into four major clusters whose starlike phylogenies testify to demographic expansions. The oldest of these African expansions dates to approximately 60,000-80,000 years ago. Eurasian sequences are derived from essentially one sequence within this ancient cluster, even though a diverse mitochondrial pool was present in Africa at the time.


American Journal of Human Genetics | 2004

The African Diaspora: Mitochondrial DNA and the Atlantic Slave Trade

Antonio Salas; Martin B. Richards; Maria Victoria Lareu; Rosaria Scozzari; Alfredo Coppa; Antonio Torroni; Vincent Macaulay; Angel Carracedo

Between the 15th and 19th centuries ad, the Atlantic slave trade resulted in the forced movement of approximately 13 million people from Africa, mainly to the Americas. Only approximately 11 million survived the passage, and many more died in the early years of captivity. We have studied 481 mitochondrial DNAs (mtDNAs) of recent African ancestry in the Americas and in Eurasia, in an attempt to trace them back to particular regions of Africa. Our results show that mtDNAs in America and Eurasia can, in many cases, be traced to broad geographical regions within Africa, largely in accordance with historical evidence, and raise the possibility that a greater resolution may be possible in the future. However, they also indicate that, at least for the moment, considerable caution is warranted when assessing claims to be able to trace the ancestry of particular lineages to a particular locality within modern-day Africa.


Current Biology | 2010

The Archaeogenetics of Europe

Pedro Soares; Alessandro Achilli; Ornella Semino; William Davies; Vincent Macaulay; Hans-Juergen Bandelt; Antonio Torroni; Martin B. Richards

A new timescale has recently been established for human mitochondrial DNA (mtDNA) lineages, making mtDNA at present the most informative genetic marker system for studying European prehistory. Here, we review the new chronology and compare mtDNA with Y-chromosome patterns, in order to summarize what we have learnt from archaeogenetics concerning five episodes over the past 50,000 years which significantly contributed to the settlement history of Europe: the pioneer colonisation of the Upper Palaeolithic, the Late Glacial re-colonisation of the continent from southern refugia after the Last Glacial Maximum, the postglacial re-colonization of deserted areas after the Younger Dryas cold snap, the arrival of Near Easterners with an incipient Neolithic package, and the small-scale migrations along continent-wide economic exchange networks beginning with the Copper Age. The available data from uniparental genetic systems have already transformed our view of the prehistory of Europe, but our knowledge of these processes remains limited. Nevertheless, their legacy remains as sedimentary layers in the gene pool of modern Europeans, and our understanding of them will improve substantially when more mtDNAs are completely sequenced, the Y chromosome more thoroughly analysed, and haplotype blocks of the autosomal genome become amenable to phylogeographic studies.


American Journal of Human Genetics | 2001

Do the four clades of the mtDNA haplogroup L2 evolve at different rates

Antonio Torroni; Chiara Rengo; Valentina Guida; Fulvio Cruciani; Daniele Sellitto; Alfredo Coppa; Fernando Luna Calderón; Barbara Simionati; Giorgio Valle; Martin B. Richards; Vincent Macaulay; Rosaria Scozzari

Forty-seven mtDNAs collected in the Dominican Republic and belonging to the African-specific haplogroup L2 were studied by high-resolution RFLP and control-region sequence analyses. Four sets of diagnostic markers that subdivide L2 into four clades (L2a-L2d) were identified, and a survey of published African data sets appears to indicate that these clades encompass all L2 mtDNAs and harbor very different geographic/ethnic distributions. One mtDNA from each of the four clades was completely sequenced by means of a new sequencing protocol that minimizes time and expense. The phylogeny of the L2 complete sequences showed that the two mtDNAs from L2b and L2d seem disproportionately derived, compared with those from L2a and L2c. This result is not consistent with a simple model of neutral evolution with a uniform molecular clock. The pattern of nonsynonymous versus synonymous substitutions hints at a role for selection in the evolution of human mtDNA. Regardless of whether selection is shaping the evolution of modern human mtDNAs, the population screening of L2 mtDNAs for the mutations identified by our complete sequence study should allow the identification of marker motifs of younger age with more restricted geographic distributions, thus providing new clues about African prehistory and the origin and relationships of African ethnic groups.


Molecular Biology and Evolution | 2012

The Expansion of mtDNA Haplogroup L3 within and out of Africa

Pedro Soares; Farida Alshamali; Joana B. Pereira; Verónica Fernandes; Nuno Silva; Carla Afonso; Marta D. Costa; Eliška Musilová; Vincent Macaulay; Martin B. Richards; Viktor Černý; Luísa Pereira

Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ∼100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ∼70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ∼70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ∼60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.


American Journal of Human Genetics | 2005

Charting the Ancestry of African Americans

Antonio Salas; Angel Carracedo; Martin B. Richards; Vincent Macaulay

The Atlantic slave trade promoted by West European empires (15th-19th centuries) forcibly moved at least 11 million people from Africa, including about one-third from west-central Africa, to European and American destinations. The mitochondrial DNA (mtDNA) genome has retained an imprint of this process, but previous analyses lacked west-central African data. Here, we make use of an African database of 4,860 mtDNAs, which include 948 mtDNA sequences from west-central Africa and a further 154 from the southwest, and compare these for the first time with a publicly available database of 1,148 African Americans from the United States that contains 1,053 mtDNAs of sub-Saharan ancestry. We show that >55% of the U.S. lineages have a West African ancestry, with <41% coming from west-central or southwestern Africa. These results are remarkably similar to the most up-to-date analyses of the historical record.

Collaboration


Dive into the Martin B. Richards's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fulvio Cruciani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rosaria Scozzari

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge