Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pedro Soares is active.

Publication


Featured researches published by Pedro Soares.


American Journal of Human Genetics | 2009

Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock

Pedro Soares; Luca Ermini; Noel Thomson; Maru Mormina; Teresa Rito; Arne Röhl; Antonio Salas; Stephen Oppenheimer; Vincent Macaulay; Martin B. Richards

There is currently no calibration available for the whole human mtDNA genome, incorporating both coding and control regions. Furthermore, as several authors have pointed out recently, linear molecular clocks that incorporate selectable characters are in any case problematic. We here confirm a modest effect of purifying selection on the mtDNA coding region and propose an improved molecular clock for dating human mtDNA, based on a worldwide phylogeny of > 2000 complete mtDNA genomes and calibrating against recent evidence for the divergence time of humans and chimpanzees. We focus on a time-dependent mutation rate based on the entire mtDNA genome and supported by a neutral clock based on synonymous mutations alone. We show that the corrected rate is further corroborated by archaeological dating for the settlement of the Canary Islands and Remote Oceania and also, given certain phylogeographic assumptions, by the timing of the first modern human settlement of Europe and resettlement after the Last Glacial Maximum. The corrected rate yields an age of modern human expansion in the Americas at approximately 15 kya that-unlike the uncorrected clock-matches the archaeological evidence, but continues to indicate an out-of-Africa dispersal at around 55-70 kya, 5-20 ky before any clear archaeological record, suggesting the need for archaeological research efforts focusing on this time window. We also present improved rates for the mtDNA control region, and the first comprehensive estimates of positional mutation rates for human mtDNA, which are essential for defining mutation models in phylogenetic analyses.


BioMed Research International | 2013

1-Aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas as VEGFR-2 Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Molecular Modelling Studies

Pedro Soares; Raquel Costa; Hugo J.C. Froufe; Ricardo C. Calhelha; Daniela Peixoto; Isabel C.F.R. Ferreira; Rui M.V. Abreu; Raquel Soares; Maria João R.P. Queiroz

The vascular endothelial growth factor receptor-2 (VEGFR-2) is a tyrosine kinase receptor involved in the growth and differentiation of endothelial cells that are implicated in tumor-associated angiogenesis. In this study, novel 1-aryl-3-[4-(thieno[3,2-d]pyrimidin-4-yloxy)phenyl]ureas were synthesized and evaluated for the VEGFR-2 tyrosine kinase inhibition. Three of these compounds showed good VEGFR-2 inhibition presenting low IC50 values (150–199 nM) in enzymatic assays, showing also a significant proliferation inhibition of VEGF-stimulated human umbilical vein endothelial cells (HUVECs) at low concentrations (0.5–1 µM), using the Bromodeoxyuridine (BrdU) assay, not affecting cell viability. The determination of the total and phosphorylated (active) VEGFR-2 was performed by western blot, and it was possible to conclude that the compounds significantly inhibit the phosphorylation of the receptor at 1 µM pointing to their antiproliferative mechanism of action in HUVECs. The molecular rationale for inhibiting the tyrosine kinase domain of VEGFR-2 was also performed and discussed using molecular docking studies.


Current Biology | 2010

The Archaeogenetics of Europe

Pedro Soares; Alessandro Achilli; Ornella Semino; William Davies; Vincent Macaulay; Hans-Juergen Bandelt; Antonio Torroni; Martin B. Richards

A new timescale has recently been established for human mitochondrial DNA (mtDNA) lineages, making mtDNA at present the most informative genetic marker system for studying European prehistory. Here, we review the new chronology and compare mtDNA with Y-chromosome patterns, in order to summarize what we have learnt from archaeogenetics concerning five episodes over the past 50,000 years which significantly contributed to the settlement history of Europe: the pioneer colonisation of the Upper Palaeolithic, the Late Glacial re-colonisation of the continent from southern refugia after the Last Glacial Maximum, the postglacial re-colonization of deserted areas after the Younger Dryas cold snap, the arrival of Near Easterners with an incipient Neolithic package, and the small-scale migrations along continent-wide economic exchange networks beginning with the Copper Age. The available data from uniparental genetic systems have already transformed our view of the prehistory of Europe, but our knowledge of these processes remains limited. Nevertheless, their legacy remains as sedimentary layers in the gene pool of modern Europeans, and our understanding of them will improve substantially when more mtDNAs are completely sequenced, the Y chromosome more thoroughly analysed, and haplotype blocks of the autosomal genome become amenable to phylogeographic studies.


Nature Genetics | 2009

A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia

Perundurai S. Dhandapany; Sakthivel Sadayappan; Yali Xue; Gareth T. Powell; Deepa Selvi Rani; Prathiba Nallari; Taranjit Singh Rai; Madhu Khullar; Pedro Soares; Ajay Bahl; Jagan Mohan Tharkan; Pradeep Vaideeswar; Andiappan Rathinavel; Calambur Narasimhan; Dharma Rakshak Ayapati; Qasim Ayub; S. Qasim Mehdi; Stephen Oppenheimer; Martin B. Richards; Alkes L. Price; Nick Patterson; David Reich; Lalji Singh; Chris Tyler-Smith; Kumarasamy Thangaraj

Heart failure is a leading cause of mortality in South Asians. However, its genetic etiology remains largely unknown. Cardiomyopathies due to sarcomeric mutations are a major monogenic cause for heart failure (MIM600958). Here, we describe a deletion of 25 bp in the gene encoding cardiac myosin binding protein C (MYBPC3) that is associated with heritable cardiomyopathies and an increased risk of heart failure in Indian populations (initial study OR = 5.3 (95% CI = 2.3–13), P = 2 × 10−6; replication study OR = 8.59 (3.19–25.05), P = 3 × 10−8; combined OR = 6.99 (3.68–13.57), P = 4 × 10−11) and that disrupts cardiomyocyte structure in vitro. Its prevalence was found to be high (∼4%) in populations of Indian subcontinental ancestry. The finding of a common risk factor implicated in South Asian subjects with cardiomyopathy will help in identifying and counseling individuals predisposed to cardiac diseases in this region.


Molecular Biology and Evolution | 2008

Climate Change and Postglacial Human Dispersals in Southeast Asia

Pedro Soares; J. Trejaut; Jun-Hun Loo; Catherine Hill; Maru Mormina; Chien-Liang Lee; Yao-Ming Chen; Georgi Hudjashov; Peter Forster; Vincent Macaulay; F David Bulbeck; Stephen Oppenheimer; Marie Lin; Martin B. Richards

Modern humans have been living in Island Southeast Asia (ISEA) for at least 50,000 years. Largely because of the influence of linguistic studies, however, which have a shallow time depth, the attention of archaeologists and geneticists has usually been focused on the last 6,000 years--in particular, on a proposed Neolithic dispersal from China and Taiwan. Here we use complete mitochondrial DNA (mtDNA) genome sequencing to spotlight some earlier processes that clearly had a major role in the demographic history of the region but have hitherto been unrecognized. We show that haplogroup E, an important component of mtDNA diversity in the region, evolved in situ over the last 35,000 years and expanded dramatically throughout ISEA around the beginning of the Holocene, at the time when the ancient continent of Sundaland was being broken up into the present-day archipelago by rising sea levels. It reached Taiwan and Near Oceania more recently, within the last approximately 8,000 years. This suggests that global warming and sea-level rises at the end of the Ice Age, 15,000-7,000 years ago, were the main forces shaping modern human diversity in the region.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetic and archaeological perspectives on the initial modern human colonization of southern Asia

Paul Mellars; Kevin Gori; Martin Carr; Pedro Soares; Martin B. Richards

It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic “supereruption” of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)—possibly as early as 120,000 y B.P. We show here that this “pre-Toba” dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60–50 thousand years ago (ka). This was associated with distinctively African microlithic and “backed-segment” technologies analogous to the African “Howiesons Poort” and related technologies, together with a range of distinctively “modern” cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of “archaic” Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date.


Molecular Biology and Evolution | 2012

The Expansion of mtDNA Haplogroup L3 within and out of Africa

Pedro Soares; Farida Alshamali; Joana B. Pereira; Verónica Fernandes; Nuno Silva; Carla Afonso; Marta D. Costa; Eliška Musilová; Vincent Macaulay; Martin B. Richards; Viktor Černý; Luísa Pereira

Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ∼100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ∼70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ∼70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ∼60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication

Alessandro Achilli; Anna Olivieri; Pedro Soares; Hovirag Lancioni; Baharak Hooshiar Kashani; Ugo A. Perego; Solomon G. Nergadze; Valeria Carossa; Marco Santagostino; Stefano Capomaccio; Michela Felicetti; Walid Al-Achkar; M. Cecilia T. Penedo; Andrea Verini-Supplizi; Massoud Houshmand; Scott R. Woodward; Ornella Semino; Maurizio Silvestrelli; Elena Giulotto; Luísa Pereira; Hans-Jürgen Bandelt; Antonio Torroni

Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A–R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ∼130–160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii—the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.


American Journal of Human Genetics | 2012

Mitochondrial DNA Signals of Late Glacial Recolonization of Europe from Near Eastern Refugia

Maria Pala; Anna Olivieri; Alessandro Achilli; Matteo Accetturo; Ene Metspalu; Maere Reidla; Erika Tamm; Monika Karmin; Tuuli Reisberg; Baharak Hooshiar Kashani; Ugo A. Perego; Valeria Carossa; Francesca Gandini; Joana B. Pereira; Pedro Soares; Norman Angerhofer; Sergei Rychkov; Nadia Al-Zahery; Valerio Carelli; Mohammad Hossein Sanati; Massoud Houshmand; Ji ri Hatina; Vincent Macaulay; Luísa Pereira; Scott R. Woodward; William Davies; Clive Gamble; Douglas Baird; Ornella Semino; Richard Villems

Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ∼19-12 thousand years (ka) ago.


Current Biology | 2008

Complete Mitochondrial Genome Sequence of the Tyrolean Iceman

Luca Ermini; Cristina Olivieri; Ermanno Rizzi; Giorgio Corti; Raoul J. P. Bonnal; Pedro Soares; Stefania Luciani; Isolina Marota; Gianluca De Bellis; Martin B. Richards; Franco Rollo

The Tyrolean Iceman was a witness to the Neolithic-Copper Age transition in Central Europe 5350-5100 years ago, and his mummified corpse was recovered from an Alpine glacier on the Austro-Italian border in 1991 [1]. Using a mixed sequencing procedure based on PCR amplification and 454 sequencing of pooled amplification products, we have retrieved the first complete mitochondrial-genome sequence of a prehistoric European. We have then compared it with 115 related extant lineages from mitochondrial haplogroup K. We found that the Iceman belonged to a branch of mitochondrial haplogroup K1 that has not yet been identified in modern European populations. This is the oldest complete Homo sapiens mtDNA genome generated to date. The results point to the potential significance of complete-ancient-mtDNA studies in addressing questions concerning the genetic history of human populations that the phylogeography of modern lineages is unable to tackle.

Collaboration


Dive into the Pedro Soares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Pala

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge