Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Bisaillon is active.

Publication


Featured researches published by Martin Bisaillon.


Journal of Biological Chemistry | 2004

The broad spectrum antiviral nucleoside ribavirin as a substrate for a viral RNA capping enzyme.

Isabelle Bougie; Martin Bisaillon

The broad spectrum antiviral nucleoside ribavirin displays activity against a variety of RNA and DNA viruses. A number of possible mechanisms have been proposed during the past 30 years to account for the antiviral activity of ribavirin, including the possibility that ribavirin might have a negative effect on the synthesis of the RNA cap structure of viral RNA transcripts. In the present study, we investigated the possibility that ribavirin can directly serve as a substrate for the vaccinia virus RNA capping enzyme. We demonstrate that ribavirin triphosphate can be used as a substrate by the capping enzyme and can form a covalent ribavirin monophosphate-enzyme intermediate reminiscent of the classical GMP-enzyme intermediate. Furthermore, our data indicate that ribavirin monophosphate can be transferred to the diphosphate end of an RNA transcript to form the unusual RpppN structure. Finally, we provide evidence that RNA transcripts that possess ribavirin as the blocking nucleoside are more stable than unblocked transcripts. However, in vitro translation assays indicate that RNA transcripts blocked with ribavirin are not translated efficiently. Our study provides the first biochemical evidences that ribavirin can directly interact with a viral capping enzyme. The ability of a purified RNA capping enzyme to utilize ribavirin as a substrate has not been previously documented and has implications for our understanding of the catalytic mechanisms of RNA capping enzymes. The biological implications of these findings for the proposed ribavirin-mediated inhibition of capping are discussed.


Journal of Biological Chemistry | 2003

Initial Binding of the Broad Spectrum Antiviral Nucleoside Ribavirin to the Hepatitis C Virus RNA Polymerase

Isabelle Bougie; Martin Bisaillon

Ribavirin is a broad spectrum antiviral nucleoside that displays activity against a variety of RNA and DNA viruses. Ribavirin is currently used in combination with interferon-α for the treatment of hepatitis C virus (HCV) infection and was recently shown to be directly incorporated by the HCV RNA polymerase into RNA products. This capacity ultimately leads to increased mutation rates and drastically reduces the viral fitness. As a first step toward elucidating the nature of the specific interaction between ribavirin and the HCV polymerase, we have utilized fluorescence spectroscopy to monitor precisely the binding of ribavirin triphosphate (RTP) to the viral polymerase. This spectroscopic approach allowed us to clearly separate the RTP binding activity from the concomitant catalytic steps. We report here the first detailed study of the binding kinetics and thermodynamic parameters involved in the interaction between RTP and an RNA polymerase. We demonstrate that RTP binds to the same active site as nucleotides. Furthermore, we provide evidence that the HCV polymerase cannot only bind to RTP but also to nonphosphorylated ribavirin, albeit with less affinity. By using various combinations of template-primers, we also demonstrate that base pairing is not involved in the initial binding of RTP to the HCV polymerase. Based on the results of circular dichroism and denaturation studies, we show that the RNA polymerase undergoes subtle conformational changes upon the binding of RTP, although the interaction does not significantly modify the stability of the protein. Finally, although metal ions are required for catalytic activity, they are not required for the initial binding of RTP to the polymerase. Such quantitative analyses are of primary importance for the rational design of new ribavirin analogues of potential therapeutic value and provide crucial insights on the interaction between RTP and the HCV RNA polymerase.


Journal of Biological Chemistry | 2003

Characterization of the Metal Ion Binding Properties of the Hepatitis C Virus RNA Polymerase

Isabelle Bougie; Sébastien Charpentier; Martin Bisaillon

The hepatitis C virus nonstructural 5B protein (NS5B) protein has been shown to require either magnesium or manganese for its RNA-dependent RNA polymerase activity. As a first step toward elucidating the nature and the role(s) of the metal ions in the reaction chemistry, we have utilized endogenous tryptophan fluorescence to quantitate the interactions of magnesium and manganese ions with this protein. The association of either Mg2+ or Mn2+ ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was used to determine the apparent dissociation constants for both ions. The apparent K d values for the binding of Mg2+ and Mn2+ ions to the free enzyme were 3.1 and 0.3 mm, respectively. Dual ligand titration experiments demonstrated that both ions bind to a single common site, for which they compete. The kinetics of real time metal ion binding to the NS5B protein were also investigated. Based on the results of our fluorescence and near-UV circular dichroism experiments, we show that NS5B undergoes conformational changes upon the binding of metal ions. However, this process does not significantly stimulate the binding to the RNA or NTP substrates. We envisage that the ion-induced conformational change is a prerequisite for catalytic activity by both correctly positioning the side chains of the residues located in the active site of the enzyme and also contributing to the stabilization of the intermediate transition state.


RNA | 2010

The RNA strands of the plus and minus polarities of peach latent mosaic viroid fold into different structures

Audrey Dubé; Tilman Baumstark; Martin Bisaillon; Jean-Pierre Perreault

It is believed that peach latent mosaic viroid (PLMVd) strands of both the plus and minus polarities fold into similar secondary and tertiary structures. In order to verify this hypothesis, the behavior of both strands in three biophysical assays was examined. PLMVd transcripts of plus and minus polarity were found to exhibit distinct electrophoretic mobility properties under native conditions, to precipitate differently in the presence of lithium chloride, and to possess variable thermal denaturation profiles. Subsequently, the structure of PLMVd transcripts of minus polarity was elucidated by biochemical methods, thereby permitting comparison to the known structure of the plus polarity. Specifically, enzymatic probing, electrophoretic mobility shift assay, and ribonuclease H hydrolysis were performed in order to resolve the secondary structure of the minus polarity. The left domains of the strands of both polarities appear to be similar, while the right domain exhibited several differences even though they both adopted a branched structure. The pseudoknot P8 formed in the plus strand seemed not formed in the minus strands. The structural differences between the two polarities might have important implications in various steps of the PLMVd life cycle.


Journal of Virology | 2009

Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid

Audrey Dubé; Martin Bisaillon; Jean-Pierre Perreault

ABSTRACT Peach latent mosaic viroid (PLMVd) is a small, single-stranded, circular RNA pathogen that infects Prunus persica trees. As with all other known viroids, the PLMVd genome does not encode any proteins. Consequently, it must interact with host cellular factors in order to ensure its life cycle. With the objective of identifying cellular proteins that interact with PLMVd, Northwestern hybridizations were performed using partially purified peach leaf extracts. Mass spectrometric analysis of the detected RNA-protein complexes led to the identification of six putative RNA-binding proteins. One of these was found to be elongation factor 1-alpha (eEF1A), and because of its known involvement in the replication and translation of various RNA viruses, further characterizations were performed. Initially, the existence of this interaction received support from an experiment that immunoprecipitated the eEF1A from a crude extract of infected peach leaves, coupled with reverse transcription-PCR detection of the PLMVd. Subsequently, eEF1A interaction with PLMVd strands of both polarities was confirmed in vitro by electrophoresis mobility shift assays, fluorescence spectroscopy, and the prediction of an altered PLMVd RNase mapping profile in the presence of the protein. The potential contribution of eEF1A to the molecular biology of PLMVd, including for viroid replication, is discussed.


Nucleic Acids Research | 2015

Small antisense oligonucleotides against G-quadruplexes: specific mRNA translational switches

Samuel G. Rouleau; Jean-Denis Beaudoin; Martin Bisaillon; Jean-Pierre Perreault

G-quadruplexes (G4) are intricate RNA structures found throughout the transcriptome. Because they are associated with a variety of biological cellular mechanisms, these fascinating structural motifs are seen as potential therapeutic targets against many diseases. While screening of chemical compounds specific to G4 motifs has yielded interesting results, no single compound successfully discriminates between G4 motifs based on nucleotide sequences alone. This level of specificity is best attained using antisense oligonucleotides (ASO). Indeed, oligonucleotide-based strategies are already used to modulate DNA G4 folding in vitro. Here, we report that, in human cells, the use of short ASO to promote and inhibit RNA G4 folding affects the translation of specific mRNAs, including one from the 5′UTR of the H2AFY gene, a histone variant associated with cellular differentiation and cancer. These results suggest that the relatively high specificity of ASO-based strategies holds significant potential for applications aimed at modulating G4-motif folding.


Biochemical Journal | 2007

Characterization of the DNA- and dNTP-binding activities of the human cytomegalovirus DNA polymerase catalytic subunit UL54

Frédéric Picard-Jean; Isabelle Bougie; Martin Bisaillon

The catalytic subunit of the human cytomegalovirus DNA polymerase is critical for the replication of the virus. In the present study, we report the expression and purification of a recombinant catalytic subunit of the human cytomegalovirus DNA polymerase expressed in bacteria which retains polymerase activity. As a first step towards elucidating the nature of the interaction between the enzyme, DNA and dNTPs, we have utilized endogenous tryptophan fluorescence to evaluate the binding of ligands to the enzyme. Using this technique, we demonstrate that the minimal DNA-binding site of the enzyme is 6 nt. We also report the first detailed study of the binding kinetics and thermodynamic parameters involved in the interaction between the enzyme, DNA and dNTPs. Our thermodynamic analyses indicate that the initial formation of the enzyme-DNA binary complex is driven by a favourable entropy change, but is also clearly associated with an unfavourable enthalpic contribution. In contrast, the interaction of dNTPs to the binary complex was shown to depend on a completely different mode of binding that is dominated by a favourable enthalpy change and associated with an unfavourable entropy change. In order to provide additional insights into the structural modifications that occur during catalysis, we correlated the effect of DNA and dNTP binding on protein structure using CD. Our results indicate that the enzyme undergoes a first conformational change upon the formation of the protein-DNA binary complex, which is followed by a second structural modification upon dNTP binding. The present study provides a better understanding of the molecular basis of DNA and dNTP recognition by the catalytic subunit of the human cytomegalovirus DNA polymerase.


Journal of Biological Chemistry | 2004

Effect of metal ion binding on the structural stability of the hepatitis C virus RNA polymerase.

Ines Benzaghou; Isabelle Bougie; Martin Bisaillon

The RNA polymerase activity of the hepatitis C virus, a major human pathogen, has previously been shown to be supported by metal ions. In the present study, we report a systematic analysis of the effect of metal ion binding on the structural stability of the hepatitis C virus RNA polymerase. Chemical and thermal denaturation assays revealed that the stability of the protein is increased significantly in the presence of metal ions. Structural analyses clearly established that metal ion binding increases hydrophobic exposure on the RNA polymerase surface. Furthermore, our denaturation studies, coupled with polymerization assays, demonstrate that the active site region of the polymerase is more sensitive to chemical denaturant than other structural scaffolds. We also report the first detailed study of the thermodynamic parameters involved in the interaction between the hepatitis C virus RNA polymerase and metal ions. Finally, a mutational analysis was also performed to investigate the importance of Asp220, Asp318, and Asp319 for metal ion binding. This mutational study underscores a strict requirement for each of the residues for metal binding, indicating that the active center of the HCV RNA polymerase is intolerant to virtually any perturbations of the metal coordination sphere, thereby highlighting the critical role of the enzyme-bound metal ions. Overall, our results indicate that metal ions play a dual modulatory role in the RNA polymerase reaction by promoting both a favorable geometry of the active site for catalysis and by increasing the structural stability of the enzyme.


PLOS ONE | 2012

Elements in the canine distemper virus M 3' UTR contribute to control of replication efficiency and virulence.

Danielle E. Anderson; Alexandre Castan; Martin Bisaillon; Veronika von Messling

Canine distemper virus (CDV) is a negative-sense, single-stranded RNA virus within the genus Morbillivirus and the family Paramyxoviridae. The Morbillivirus genome is composed of six transcriptional units that are separated by untranslated regions (UTRs), which are relatively uniform in length, with the exception of the UTR between the matrix (M) and fusion (F) genes. This UTR is at least three times longer and in the case of CDV also highly variable. Exchange of the M-F region between different CDV strains did not affect virulence or disease phenotype, demonstrating that this region is functionally interchangeable. Viruses carrying the deletions in the M 3′ UTR replicated more efficiently, which correlated with a reduction of virulence, suggesting that overall length as well as specific sequence motifs distributed throughout the region contribute to virulence.


Biophysical Journal | 2009

Monitoring of an RNA Multistep Folding Pathway by Isothermal Titration Calorimetry

Cédric Reymond; Martin Bisaillon; Jean-Pierre Perreault

Isothermal titration calorimetry was used to monitor the energetic landscape of a catalytic RNA, specifically that of the hepatitis delta virus ribozyme. Using mutants that isolated various tertiary interactions, the thermodynamic parameters of several ribozyme-substrate intermediates were determined. The results shed light on the impact of several tertiary interactions on the global structure of the ribozyme. In addition, the data indicate that the formation of the P1.1 pseudoknot is the limiting step of the molecular mechanism. Last, as illustrated here, isothermal titration calorimetry appears to be a method of choice for the elucidation of an RNAs folding pathway.

Collaboration


Dive into the Martin Bisaillon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andréa Allaire

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Simon Despins

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Elvy Lapointe

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Guy Lemay

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathieu Durand

Université de Sherbrooke

View shared research outputs
Researchain Logo
Decentralizing Knowledge