Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin D. Snider is active.

Publication


Featured researches published by Martin D. Snider.


Journal of Biological Chemistry | 2001

Internal Ribosome Entry Site-mediated Translation of a Mammalian mRNA Is Regulated by Amino Acid Availability

James Fernandez; Ibrahim Yaman; Rangnath Mishra; William C. Merrick; Martin D. Snider; Wouter H. Lamers; Maria Hatzoglou

The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA expression system was used to demonstrate the presence of an internal ribosomal entry sequence (IRES) within the 5′-untranslated region of the cat-1 mRNA. This study shows that IRES-mediated translation of the cat-1 mRNA is regulated by amino acid availability. This IRES causes an increase in translation under conditions of amino acid starvation. In contrast, cap-dependent protein synthesis is inhibited during amino acid starvation, which is well correlated with decreased phosphorylation of the cap-binding protein, eIF4E. These findings reveal a new aspect of mammalian gene expression and regulation that provides a cellular stress response; when the nutrient supply is limited, the activation of IRES-mediated translation of mammalian mRNAs results in the synthesis of proteins essential for cell survival.


Journal of Biological Chemistry | 2002

Nutritional Control of mRNA Stability Is Mediated by a Conserved AU-rich Element That Binds the Cytoplasmic Shuttling Protein HuR

Ibrahim Yaman; James Fernandez; Bedabrata Sarkar; Robert J. Schneider; Martin D. Snider; Laura E. Nagy; Maria Hatzoglou

The cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene increases during nutritional stress as part of the adaptive response to starvation. Amino acid limitation induces coordinate increases in stability and translation of the cat-1 mRNA, at a time when global protein synthesis decreases. It is shown here that increased cat-1 mRNA stability requires an 11 nucleotide AU-rich element within the distal 217 bases of the 3′-untranslated region. When this 217-nucleotide nutrient sensorAU-rich element (NS-ARE) is present in a chimeric mRNA it confers mRNA stabilization during amino acid starvation. HuR is a member of the ELAV family of RNA-binding proteins that has been implicated in regulating the stability of ARE-containing mRNAs. We show here that the cytoplasmic concentration of HuR increases during amino acid starvation, at a time when total cellular HuR levels decrease. In addition, RNA gel shift experiments in vitro demonstrated that HuR binds to the NS-ARE and binding was dependent on the 11 residue AU-rich element. Moreover, HuR binding to the NS-ARE in extracts from amino acid-starved cells increased in parallel with the accumulation of cytoplasmic HuR. It is proposed that an adaptive response of cells to nutritional stress results in increased mRNA stability mediated by HuR binding to the NS-ARE.


Journal of Biological Chemistry | 2006

Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2α phosphorylation and cap-independent translation

Francesca Gaccioli; Charlie C. Huang; Chuanping Wang; Elena Bevilacqua; Renata Franchi-Gazzola; Gian C. Gazzola; Ovidio Bussolati; Martin D. Snider; Maria Hatzoglou

Nutritional stress caused by amino acid starvation involves a coordinated cellular response that includes the global decrease of protein synthesis and the increased production of cell defense proteins. Part of this response is the induction of transport system A for neutral amino acids that leads to the recovery of cell volume and amino acid levels once extracellular amino acid availability is restored. Hypertonic stress also increases system A activity as a mechanism to promote a rapid recovery of cell volume. Both a starvation-dependent and a hypertonic increase of system A transport activity are due to the induction of SNAT2, the ubiquitous member of SLC38 family. The molecular mechanisms underlying SNAT2 induction were investigated in tissue culture cells. We show that the increase in system A transport activity and SNAT2 mRNA levels upon amino acid starvation were blunted in cells with a mutant eIF2α that cannot be phosphorylated. In contrast, the induction of system A activity and SNAT2 mRNA levels by hypertonic stress were independent of eIF2α phosphorylation. The translational control of the SNAT2 mRNA during amino acid starvation was also investigated. It is shown that the 5′-untranslated region contains an internal ribosome entry site that is constitutively active in amino acid-fed and -deficient cells and in a cell-free system. We also show that amino acid starvation caused a 2.5-fold increase in mRNA and protein expression from a reporter construct containing both the SNAT2 intronic amino acid response element and the SNAT2-untranslated region. We conclude that the adaptive response of system A activity to amino acid starvation requires eukaryotic initiation factor 2α phosphorylation, increased gene transcription, and internal ribosome entry site-mediated translation. In contrast, the response to hypertonic stress does not involve eukaryotic initiation factor 2α phosphorylation, suggesting that SNAT2 expression can be modulated by specific signaling pathways in response to different stresses.


Journal of Biological Chemistry | 2008

Differential Control of the CCAAT/Enhancer-binding Protein β (C/EBPβ) Products Liver-enriched Transcriptional Activating Protein (LAP) and Liver-enriched Transcriptional Inhibitory Protein (LIP) and the Regulation of Gene Expression during the Response to Endoplasmic Reticulum Stress

Yi Li; Elena Bevilacqua; Calin Bogdan Chiribau; Mithu Majumder; Chuanping Wang; Colleen M. Croniger; Martin D. Snider; Peter F. Johnson; Maria Hatzoglou

The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers a stress response program that protects cells early in the response and can lead to apoptosis during prolonged stress. The basic leucine zipper transcription factor, CCAAT/enhancer-binding protein β (C/EBPβ), is one of the genes with increased expression during ER stress. Translation of the C/EBPβ mRNA from different initiation codons leads to the synthesis of two transcriptional activators (LAP-1 and -2) and a transcriptional repressor (LIP). The LIP/LAP ratio is a critical factor in C/EBPβ-mediated gene transcription. It is shown here that the LIP/LAP ratio decreased by 5-fold during the early phase of ER stress and increased by 20-fold during the late phase, mostly because of changes in LIP levels. The early decrease in LIP required degradation via the proteasome pathway and phosphorylation of the translation initiation factor, eIF2α. The increased LIP levels during the late phase were due to increased synthesis and increased stability of the protein. It is proposed that regulation of synthesis and degradation rates during ER stress controls the LIP/LAP ratio. The importance of C/EBPβ in the ER-stress response program was demonstrated using C/EBPβ-deficient mouse embryonic fibroblasts. It is shown that C/EBPβ attenuates expression of pro-survival ATF4 target genes in late ER stress and enhances expression of cell death-associated genes downstream of CHOP. The inhibitory effect of LIP on ATF4-induced transcription was demonstrated for the cat-1 amino acid transporter gene. We conclude that regulation of LIP/LAP ratios during ER stress is a novel mechanism for modulating the cellular stress response.


Biochemical Journal | 2007

A feedback transcriptional mechanism controls the level of the arginine/lysine transporter cat-1 during amino acid starvation

Alex B. Lopez; Chuanping Wang; Charlie C. Huang; Ibrahim Yaman; Yi Li; Kaushik Chakravarty; Peter F. Johnson; Cheng Ming Chiang; Martin D. Snider; Ronald C. Wek; Maria Hatzoglou

The adaptive response to amino acid limitation in mammalian cells inhibits global protein synthesis and promotes the expression of proteins that protect cells from stress. The arginine/lysine transporter, cat-1, is induced during amino acid starvation by transcriptional and post-transcriptional mechanisms. It is shown in the present study that the transient induction of cat-1 transcription is regulated by the stress response pathway that involves phosphorylation of the translation initiation factor, eIF2 (eukaryotic initiation factor-2). This phosphorylation induces expression of the bZIP (basic leucine zipper protein) transcription factors C/EBP (CCAAT/enhancer-binding protein)-beta and ATF (activating transcription factor) 4, which in turn induces ATF3. Transfection experiments in control and mutant cells, and chromatin immunoprecipitations showed that ATF4 activates, whereas ATF3 represses cat-1 transcription, via an AARE (amino acid response element), TGATGAAAC, in the first exon of the cat-1 gene, which functions both in the endogenous and in a heterologous promoter. ATF4 and C/EBPbeta activated transcription when expressed in transfected cells and they bound as heterodimers to the AARE in vitro. The induction of transcription by ATF4 was inhibited by ATF3, which also bound to the AARE as a heterodimer with C/EBPbeta. These results suggest that the transient increase in cat-1 transcription is due to transcriptional activation caused by ATF4 followed by transcriptional repression by ATF3 via a feedback mechanism.


Journal of Biological Chemistry | 2003

Transcriptional control of the arginine/lysine transporter, cat-1, by physiological stress

James Fernandez; Alex B. Lopez; Chuanping Wang; Rangnath Mishra; Lingyin Zhou; Ibrahim Yaman; Martin D. Snider; Maria Hatzolgou

Cells respond to physiological stress by phosphorylating the α subunit of the translation initiation factor eIF2. This adaptive response inhibits protein synthesis and up-regulates genes essential for cell survival. Cat-1, the transporter for the essential amino acids, arginine and lysine, is one of the up-regulated genes. We previously showed that stress increases cat-1 expression by coordinated stabilization of the mRNA and increased mRNA translation. This induction is triggered by amino acid depletion and the unfolded protein response (UPR), which is caused by unfolded proteins in the endoplasmic reticulum. We show here that cat-1 gene transcription is also increased by cellular stress. Our studies demonstrate that the cat-1 gene promoter/regulatory region is TATA-less and is located in a region that includes 94 bases of the first exon. Transcription from this promoter is stimulated 8-fold by cellular stress. An amino acid response element within the first exon is shown to be required for the response to amino acid depletion but not to the UPR. The stimulation of transcription by amino acid depletion requires activation of GCN2 kinase, which phosphorylates eIF2α. This phosphorylation also induces translation of the cat-1 mRNA, demonstrating that stress-induced transcriptional and translational control of cat-1 are downstream targets of a signaling pathway initiating with eIF2α phosphorylation. Our studies show that the increase in cat-1 gene expression by cellular stress involves at least three types of coordinate regulation: regulation of transcription, regulation of mRNA stability, and regulation of mRNA translation.


Molecular and Cellular Biology | 2009

The hnRNA-Binding Proteins hnRNP L and PTB Are Required for Efficient Translation of the Cat-1 Arginine/Lysine Transporter mRNA during Amino Acid Starvation

Mithu Majumder; Ibrahim Yaman; Francesca Gaccioli; Vladimir V. Zeenko; Chuanping Wang; Mark G. Caprara; Richard C. Venema; Anton A. Komar; Martin D. Snider; Maria Hatzoglou

ABSTRACT The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5′ untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.


Journal of Biological Chemistry | 2006

Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eIF2alpha phosphorylation and cap-independent translation

Francesca Gaccioli; Charlie C. Huang; Chuanping Wang; Elena Bevilacqua; Renata Franchi-Gazzola; Gian C. Gazzola; Ovidio Bussolati; Martin D. Snider; Maria Hatzoglou

Nutritional stress caused by amino acid starvation involves a coordinated cellular response that includes the global decrease of protein synthesis and the increased production of cell defense proteins. Part of this response is the induction of transport system A for neutral amino acids that leads to the recovery of cell volume and amino acid levels once extracellular amino acid availability is restored. Hypertonic stress also increases system A activity as a mechanism to promote a rapid recovery of cell volume. Both a starvation-dependent and a hypertonic increase of system A transport activity are due to the induction of SNAT2, the ubiquitous member of SLC38 family. The molecular mechanisms underlying SNAT2 induction were investigated in tissue culture cells. We show that the increase in system A transport activity and SNAT2 mRNA levels upon amino acid starvation were blunted in cells with a mutant eIF2α that cannot be phosphorylated. In contrast, the induction of system A activity and SNAT2 mRNA levels by hypertonic stress were independent of eIF2α phosphorylation. The translational control of the SNAT2 mRNA during amino acid starvation was also investigated. It is shown that the 5′-untranslated region contains an internal ribosome entry site that is constitutively active in amino acid-fed and -deficient cells and in a cell-free system. We also show that amino acid starvation caused a 2.5-fold increase in mRNA and protein expression from a reporter construct containing both the SNAT2 intronic amino acid response element and the SNAT2-untranslated region. We conclude that the adaptive response of system A activity to amino acid starvation requires eukaryotic initiation factor 2α phosphorylation, increased gene transcription, and internal ribosome entry site-mediated translation. In contrast, the response to hypertonic stress does not involve eukaryotic initiation factor 2α phosphorylation, suggesting that SNAT2 expression can be modulated by specific signaling pathways in response to different stresses.


Journal of Biological Chemistry | 2010

eIF2α Phosphorylation Tips the Balance to Apoptosis during Osmotic Stress

Elena Bevilacqua; Xinglong Wang; Mithu Majumder; Francesca Gaccioli; Celvie L. Yuan; Chuanping Wang; Xiongwei Zhu; Lindsay E. Jordan; Donalyn Scheuner; Randal J. Kaufman; Antonis E. Koromilas; Martin D. Snider; Martin Holcik; Maria Hatzoglou

Regulation of cell volume is of great importance because persistent swelling or shrinkage leads to cell death. Tissues experience hypertonicity in both physiological (kidney medullar cells) and pathological states (hypernatremia). Hypertonicity induces an adaptive gene expression program that leads to cell volume recovery or apoptosis under persistent stress. We show that the commitment to apoptosis is controlled by phosphorylation of the translation initiation factor eIF2α, the master regulator of the stress response. Studies with cultured mouse fibroblasts and cortical neurons show that mutants deficient in eIF2α phosphorylation are protected from hypertonicity-induced apoptosis. A novel link is revealed between eIF2α phosphorylation and the subcellular distribution of the RNA-binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). Stress-induced phosphorylation of eIF2α promotes apoptosis by inducing the cytoplasmic accumulation of hnRNP A1, which attenuates internal ribosome entry site-mediated translation of anti-apoptotic mRNAs, including Bcl-xL that was studied here. Hypertonic stress induced the eIF2α phosphorylation-independent formation of cytoplasmic stress granules (SGs, structures that harbor translationally arrested mRNAs) and the eIF2α phosphorylation-dependent accumulation of hnRNP A1 in SGs. The importance of hnRNP A1 was demonstrated by induction of apoptosis in eIF2α phosphorylation-deficient cells that express exogenous cytoplasmic hnRNP A1. We propose that eIF2α phosphorylation during hypertonic stress promotes apoptosis by sequestration of specific mRNAs in SGs in a process mediated by the cytoplasmic accumulation of hnRNP A1.


Journal of Biological Chemistry | 2013

A self-defeating anabolic program leads to β-cell apoptosis in endoplasmic reticulum stress-induced diabetes via regulation of amino acid flux

Dawid Krokowski; Jaeseok Han; Mridusmita Saikia; Mithu Majumder; Celvie L. Yuan; Bo-Jhih Guan; Elena Bevilacqua; Ovidio Bussolati; Stefan Bröer; Peter Arvan; Marek Tchórzewski; Martin D. Snider; Michelle A. Puchowicz; Colleen M. Croniger; Scot R. Kimball; Tao Pan; Antonis E. Koromilas; Randal J. Kaufman; Maria Hatzoglou

Background: Protein synthesis control is important for β-cell fate during ER stress. Results: Increased protein synthesis during chronic ER stress in β-cells involves the transcriptional induction of an amino acid transporter network. Conclusion: Increased amino acid uptake in β-cells during ER stress promotes apoptosis. Significance: Induced expression of a network of amino acid transporters in islets can contribute to chronic ER stress-induced diabetes. Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing β-cells in type 2 diabetes mellitus. β-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in β-cells in vivo. Paradoxically, chronic ER stress in β-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in β-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes.

Collaboration


Dive into the Martin D. Snider's collaboration.

Top Co-Authors

Avatar

Maria Hatzoglou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Chuanping Wang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Ibrahim Yaman

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Mithu Majumder

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

James Fernandez

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alex B. Lopez

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Charlie C. Huang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Anton A. Komar

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar

Dawid Krokowski

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge