Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin D. Still is active.

Publication


Featured researches published by Martin D. Still.


Space Science Reviews | 2005

The Swift Ultra-Violet/Optical Telescope

Peter W. A. Roming; Thomas E. Kennedy; Keith O. Mason; John A. Nousek; Lindy Ahr; Richard E. Bingham; Patrick S. Broos; Mary J. Carter; Barry K. Hancock; Howard E. Huckle; Sally D. Hunsberger; Hajime Kawakami; Ronnie Killough; T. Scott Koch; Michael K. McLelland; Kelly Smith; Philip J. Smith; Juan Carlos Soto; Patricia Therese Boyd; Alice A. Breeveld; Stephen T. Holland; M. V. Ivanushkina; Michael S. Pryzby; Martin D. Still; Joseph Stock

The Ultra-Violet/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray bursts in the 170–600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey–Chrétien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.


Monthly Notices of the Royal Astronomical Society | 2007

Photometric calibration of the Swift ultraviolet/optical telescope

T. S. Poole; Alice A. Breeveld; M. J. Page; Wayne B. Landsman; S. T. Holland; P. W. A. Roming; N. P. M. Kuin; Peter J. Brown; Caryl Gronwall; Sally D. Hunsberger; S. Koch; K. O. Mason; Patricia Schady; D. E. Vanden Berk; Alexander J. Blustin; P. T. Boyd; Patrick S. Broos; Michael P. Carter; Margaret Chester; A. Cucchiara; Bruce R. Hancock; H. E. Huckle; Stefan Immler; M. V. Ivanushkina; Tracy L. M. Kennedy; F. E. Marshall; Adam N. Morgan; S. B. Pandey; M. De Pasquale; Penelope Smith

We present the photometric calibration of the Swift Ultraviolet/Optical Telescope (UVOT) which includes: optimum photometric and background apertures, effective area curves, colour transformations, conversion factors for count rates to flux and the photometric zero-points (which are accurate to better than 4 per cent) for each of the seven UVOT broad-band filters. The calibration was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types. The calibration results include the position-dependent uniformity, and instrument response over the 1600‐8000 A operational range. Because the UVOT is a photon-counting instrument, we also discuss the effect of coincidence loss on the calibration results. We provide practical guidelines for using the calibration in UVOT data analysis. The results presented here supersede previous calibration results.


The Astronomical Journal | 2009

ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE

Peter J. Brown; Stephen T. Holland; Stefan Immler; Peter A. Milne; Peter W. A. Roming; Neil Gehrels; John A. Nousek; Nino Panagia; Martin D. Still; Daniel E. Vanden Berk

We present ultravioliet (UV) observations of supernovae (SNe) obtained with the UltraViolet/Optical Telescope (UVOT) on board the Swift spacecraft. This is the largest sample of UV light curves from any single instrument and covers all major SN types and most subtypes. The UV light curves of SNe Ia are fairly homogenous while SNe Ib/c and IIP show more variety in their light curve shapes. The UV-optical colors clearly differentiate SNe Ia and IIP, particularly at early times. The color evolution of SNe IIP, however, makes their colors similar to SNe Ia at about 20 days after explosion. SNe Ib/c are shown to have varied UV-optical colors. The use of UV colors to help type SNe will be important for high redshift SNe discovered in optical observations. These data can be added to ground based optical and near infrared data to create bolometric light curves of individual objects and as checks on generic bolometric corrections used in the absence of UV data. This sample can also be compared with rest-frame UV observations of high redshift SNe observed at optical wavelengths.We present ultraviolet (UV) observations of supernovae (SNe) obtained with the UltraViolet/Optical Telescope (UVOT) on board the Swift spacecraft. This is the largest sample of UV light curves from any single instrument and covers all major SN types and most subtypes. The UV light curves of SNe Ia are fairly homogenous, while SNe Ib/c and IIP show more variety in their light-curve shapes. The UV-optical colors clearly differentiate SNe Ia and IIP, particularly at early times. The color evolution of SNe IIP, however, makes their colors similar to SNe Ia at about 20 days after explosion. SNe Ib/c are shown to have varied UV-optical colors. The use of UV colors to help type SNe will be important for high-redshift SNe discovered in optical observations. These data can be added to ground-based optical and near infrared data to create bolometric light curves of individual objects and as checks on generic bolometric corrections used in the absence of UV data. This sample can also be compared with rest-frame UV observations of high-redshift SNe observed at optical wavelengths.


Monthly Notices of the Royal Astronomical Society | 2010

Dust and metal column densities in gamma-ray burst host galaxies

Patricia Schady; Mat Page; S. R. Oates; Martin D. Still; M. De Pasquale; T. Dwelly; N. P. M. Kuin; S. T. Holland; F. E. Marshall; P. W. A. Roming

In this paper we present the results from the analysis of a sample of 28 gamma-ray burst (GRB) afterglow spectral energy distributions, spanning the X-ray through to near-infrared wavelengths. This is the largest sample of GRB afterglow spectral energy distributions thus far studied, providing a strong handle on the optical depth distribution of soft X-ray absorption and dust-extinction systems in GRB host galaxies. We detect an absorption system within the GRB host galaxy in 79 per cent of the sample, and an extinction system in 71 per cent of the sample, and find the Small Magellanic Cloud (SMC) extinction law to provide an acceptable fit to the host galaxy extinction profile for the majority of cases, consistent with previous findings. The range in the soft X-ray absorption to dust-extinction ratio, N-H,N-X/A(V), in GRB host galaxies spans almost two orders of magnitude, and the typical ratios are significantly larger than those of the Magellanic Clouds or Milky Way. Although dust destruction could be a cause, at least in part, for the large N-H,N-X/A(V) ratios, the good fit provided by the SMC extinction law for the majority of our sample suggests that there is an abundance of small dust grains in the GRB environment, which we would expect to have been destroyed if dust destruction were responsible for the large N-H,N-X/A(V) ratios. Instead, our analysis suggests that the distribution of N-H,N-X/A(V) in GRB host galaxies may be mostly intrinsic to these galaxies, and this is further substantiated by evidence for a strong negative correlation between N-H,N-X/A(V) and metallicity for a subsample of GRB hosts with known metallicity.


Monthly Notices of the Royal Astronomical Society | 2009

A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope

S. R. Oates; M. J. Page; Patricia Schady; M. De Pasquale; T. S. Koch; Alice A. Breeveld; Peter J. Brown; M. M. Chester; S. T. Holland; Erik Andrew Hoversten; N. P. M. Kuin; F. E. Marshall; P. W. A. Roming; Martin D. Still; D. E. Vanden Berk; S. Zane; John A. Nousek

We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observers frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle. or within a core of a uniform energy density theta(c). We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.


Monthly Notices of the Royal Astronomical Society | 2010

Further calibration of the Swift ultraviolet/optical telescope

Alice A. Breeveld; P. A. Curran; Erik Andrew Hoversten; S. Koch; Wayne B. Landsman; F. E. Marshall; M. J. Page; T. S. Poole; P. W. A. Roming; Penelope Smith; Martin D. Still; V. Yershov; A. J. Blustin; Peter J. Brown; Caryl Gronwall; S. T. Holland; N. P. M. Kuin; Katherine E. McGowan; S. Rosen; P. T. Boyd; Patrick S. Broos; Michael P. Carter; M. M. Chester; Bruce R. Hancock; H. E. Huckle; Stefan Immler; M. V. Ivanushkina; Tracy L. M. Kennedy; K. O. Mason; Adam N. Morgan

The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard the Swift observatory. The photometric calibration has been published, and this paper follows up with details on other aspects of the calibration including a measurement of the point spread function with an assessment of the orbital variation and the effect on photometry. A correction for large-scale variations in sensitivity over the field of view is described, as well as a model of the coincidence loss which is used to assess the coincidence correction in extended regions. We have provided a correction for the detector distortion and measured the resulting internal astrometric accuracy of the UVOT, also giving the absolute accuracy with respect to the International Celestial Reference System. We have compiled statistics on the background count rates, and discuss the sources of the background, including instrumental scattered light. In each case, we describe any impact on UVOT measurements, whether any correction is applied in the standard pipeline data processing or whether further steps are recommended.


The Astrophysical Journal | 2010

The Absolute Magnitudes of Type Ia Supernovae in the Ultraviolet

Peter J. Brown; Peter W. A. Roming; Peter A. Milne; F. Bufano; Robin Ciardullo; N. Elias-Rosa; Alexei V. Filippenko; Ryan J. Foley; Neil Gehrels; Caryl Gronwall; Malcolm Stuart Hicken; Stephen T. Holland; Erik Andrew Hoversten; Stefan Immler; Robert P. Kirshner; Weidong Li; Paolo A. Mazzali; Mark M. Phillips; Tyler A. Pritchard; Martin D. Still; Massimo Turatto; Daniel E. Vanden Berk

We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1_(rc) covering ~2600-3300 A after removing optical light, and u ≈3000-4000 A) compared to a mid-UV filter (uvm2 ≈2000-2400 A). The uvw1_(rc) – b colors show a scatter of ~0.3 mag while uvm2–b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 – uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, ~1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.


Monthly Notices of the Royal Astronomical Society | 2009

The first outburst of the new magnetar candidate SGR 0501+4516

N. Rea; G. L. Israel; R. Turolla; P. Esposito; S. Mereghetti; Diego Gotz; S. Zane; A. Tiengo; K. Hurley; M. Feroci; Martin D. Still; V. Yershov; C. Winkler; Rosalba Perna; F. Bernardini; P. Ubertini; L. Stella; Sergio Campana; M. van der Klis; Paul M. Woods

We report here on the outburst onset and evolution of the new soft gamma-ray repeater SGR 0501+4516. We monitored the new SGR with XMM- Newton starting on 2008 August 23, 1 day after the source became burst active, and continuing with four more observations in the following month, with the last one on 2008 September 30. Combining the data with the Swift X-ray telescope (Swift-XRT) and Suzaku data, we modelled the outburst decay over a 3-month period, and we found that the source flux decreased exponentially with a time-scale of t(c) = 23.8 d. In the first XMM-Newton observation, a large number of short X-ray bursts were observed, the rate of which decayed drastically in the following observations. We found large changes in the spectral and timing behaviour of the source during the first month of the outburst decay, with softening emission as the flux decayed, and the non-thermal soft X-ray spectral component fading faster than the thermal one. Almost simultaneously to our second and fourth XMM-Newton observations (on 2008 August 29 and September 2), we observed the source in the hard X-ray range with INTEGRAL, which clearly detected the source up to similar to 100 keV in the first pointing, while giving only upper limits during the second pointing, discovering a variable hard X-ray component fading in less than 10 days after the bursting activation. We performed a phase-coherent X-ray timing analysis over about 160 days starting with the burst activation and found evidence of a strong second derivative period component [(sic) = -1.6(4) x 10(-19) s s(-2)]. Thanks to the phase connection, we were able to study the phase-resolved spectral evolution of SGR 0501+ 4516 in great detail. We also report on the ROSAT quiescent source data, taken back in 1992 when the source exhibits a flux similar to 80 times lower than that measured during the outburst, and a rather soft, thermal spectrum.


web science | 2006

Very Early Optical Afterglows of Gamma-Ray Bursts: Evidence for Relative Paucity of Detection

Peter W. A. Roming; Patricia Schady; Derek B. Fox; Bing Zhang; En-Wei Liang; Keith O. Mason; E. Rol; David N. Burrows; Alex J. Blustin; Patricia Therese Boyd; Peter J. Brown; Stephen T. Holland; Katherine E. McGowan; Wayne B. Landsman; Kim L. Page; James E. Rhoads; S. R. Rosen; Daniel E. Vanden Berk; S. D. Barthelmy; Alice A. Breeveld; Antonino Cucchiara; Massimiliano De Pasquale; Edward E. Fenimore; Neil Gehrels; Caryl Gronwall; Dirk Grupe; Michael R. Goad; M. V. Ivanushkina; Cynthia H. James; J. A. Kennea

Very early observations with the Swift satellite of γ-ray burst (GRB) afterglows reveal that the optical component is not detected in a large number of cases. This is in contrast to the bright optical flashes previously discovered in some GRBs (e.g., GRB 990123 and GRB 021211). Comparisons of the X-ray afterglow flux to the optical afterglow flux and prompt γ-ray fluence is used to quantify the seemingly deficient optical, and in some cases X-ray, light at these early epochs. This comparison reveals that some of these bursts appear to have higher than normal γ-ray efficiencies. We discuss possible mechanisms and their feasibility for explaining the apparent lack of early optical emission. The mechanisms considered include, foreground extinction, circumburst absorption, Lyα blanketing and absorption due to high-redshift, low-density environments, rapid temporal decay, and intrinsic weakness of the reverse shock. Of these, foreground extinction, circumburst absorption, and high redshift provide the best explanations for most of the nondetections in our sample. There is tentative evidence of suppression of the strong reverse shock emission. This could be because of a Poynting flux-dominated flow or a pure nonrelativistic hydrodynamic reverse shock.


The Astrophysical Journal | 2000

ORBITAL DYNAMICS OF CYGNUS X-3

M. M. Hanson; Martin D. Still; R. P. Fender

Orbital-phase-resolved infrared spectra of Cygnus X-3 in outburst and quiescence, including tomographic analysis, are presented. We confirm the phasing of broad He II and N V lines in quiescence, such that maximum blueshift corresponds to the X-ray minimum at Φ = 0.00 ± 0.04. In outburst, double-peaked He I structures show a similar phasing with two significant differences: (1) although varying in relative strength, there is continuous line emission in blue and red peaks around the orbit; and (2) an absorption component, ~ of an orbit out of phase with the emission features, is discerned. Doppler tomograms of the double-peaked profiles are consistent with a disk-wind geometry, rotating at velocities of 1000 km s-1. Regrettably, the tomography algorithm will produce a similar ring structure from alternative line sources if contaminated by overlying P Cygni profiles. This is certainly the case in the strong 2.0587 μm He I line, leading to an ambiguous solution for the nature of double-peaked emission. The absorption feature, detected of an orbit out of phase with the emission features, is consistent with an origin in the He star wind and yields for the first time a plausible radial velocity curve for the system. We directly derive the mass function of the system, 0.027 M☉. If we assume a neutron star accretor and adopt a high orbital inclination, i > 60°, we obtain a mass range for the He star of 5 M☉ MWR 11 M☉. Alternatively, if the compact object is a black hole, we estimate MBH 10 M☉. We discuss the implications of these masses for the nature and size of the binary system.

Collaboration


Dive into the Martin D. Still's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. T. Holland

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Gehrels

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Caryl Gronwall

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Wayne B. Landsman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Sally D. Hunsberger

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. V. Ivanushkina

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge