Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Fraunholz is active.

Publication


Featured researches published by Martin Fraunholz.


Nature | 2002

Genome sequence of the human malaria parasite Plasmodium falciparum

Malcolm J. Gardner; Neil Hall; Eula Fung; Owen White; Matthew Berriman; Richard W. Hyman; Jane M. Carlton; Arnab Pain; Karen E. Nelson; Sharen Bowman; Ian T. Paulsen; Keith D. James; Jonathan A. Eisen; Kim Rutherford; Alister Craig; Sue Kyes; Man Suen Chan; Vishvanath Nene; Shamira Shallom; Bernard B. Suh; Jeremy Peterson; Sam Angiuoli; Mihaela Pertea; Jonathan E. Allen; Jeremy D. Selengut; Daniel H. Haft; Michael W. Mather; Akhil B. Vaidya; David M. A. Martin; Alan H. Fairlamb

The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host–parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.


Nature Reviews Microbiology | 2004

Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast.

Stuart A. Ralph; Giel G. van Dooren; Ross F. Waller; Michael J. Crawford; Martin Fraunholz; Bernardo J. Foth; Christopher J. Tonkin; David S. Roos; Geoffrey I. McFadden

Discovery of a relict chloroplast (the apicoplast) in malarial parasites presented new opportunities for drug development. The apicoplast – although no longer photosynthetic – is essential to parasites. Combining bioinformatics approaches with experimental validation in the laboratory, we have identified more than 500 proteins predicted to function in the apicoplast. By comparison with plant chloroplasts, we have reconstructed several anabolic pathways for the parasite plastid that are fundamentally different to the analogous pathways in the human host and are potentially good targets for drug development. Products of these pathways seem to be exported from the apicoplast and might be involved in host-cell invasion.


Nature | 2001

The highly reduced genome of an enslaved algal nucleus

Susan E. Douglas; Stefan Zauner; Martin Fraunholz; Margaret J. Beaton; Susanne Penny; Lang-Tuo Deng; Xiaonan Wu; Michael Reith; Thomas Cavalier-Smith; Uwe G. Maier

Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.


Nucleic Acids Research | 2003

PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data

Amit Bahl; Brian P. Brunk; Jonathan Crabtree; Martin Fraunholz; Bindu Gajria; Gregory R. Grant; Hagai Ginsburg; Dinesh Gupta; Jessica C. Kissinger; Philip Labo; Li Li; Matthew D. Mailman; Arthur J. Milgram; David Pearson; David S. Roos; Jonathan Schug; Christian J. Stoeckert; Patricia L. Whetzel

PlasmoDB (http://PlasmoDB.org) is the official database of the Plasmodium falciparum genome sequencing consortium. This resource incorporates the recently completed P. falciparum genome sequence and annotation, as well as draft sequence and annotation emerging from other Plasmodium sequencing projects. PlasmoDB currently houses information from five parasite species and provides tools for intra- and inter-species comparisons. Sequence information is integrated with other genomic-scale data emerging from the Plasmodium research community, including gene expression analysis from EST, SAGE and microarray projects and proteomics studies. The relational schema used to build PlasmoDB, GUS (Genomics Unified Schema) employs a highly structured format to accommodate the diverse data types generated by sequence and expression projects. A variety of tools allow researchers to formulate complex, biologically-based, queries of the database. A stand-alone version of the database is also available on CD-ROM (P. falciparum GenePlot), facilitating access to the data in situations where internet access is difficult (e.g. by malaria researchers working in the field). The goal of PlasmoDB is to facilitate utilization of the vast quantities of genomic-scale data produced by the global malaria research community. The software used to develop PlasmoDB has been used to create a second Apicomplexan parasite genome database, ToxoDB (http://ToxoDB.org).


PLOS Pathogens | 2006

Cytoskeletal Components of an Invasion Machine—The Apical Complex of Toxoplasma gondii

Ke Hu; Jeffrey R. Johnson; Laurence Florens; Martin Fraunholz; Sapna Suravajjala; Camille DiLullo; John R. Yates; David S. Roos; John M. Murray

The apical complex of Toxoplasma gondii is widely believed to serve essential functions in both invasion of its host cells (including human cells), and in replication of the parasite. The understanding of apical complex function, the basis for its novel structure, and the mechanism for its motility are greatly impeded by lack of knowledge of its molecular composition. We have partially purified the conoid/apical complex, identified ~200 proteins that represent 70% of its cytoskeletal protein components, characterized seven novel proteins, and determined the sequence of recruitment of five of these proteins into the cytoskeleton during cell division. Our results provide new markers for the different subcompartments within the apical complex, and revealed previously unknown cellular compartments, which facilitate our understanding of how the invasion machinery is built. Surprisingly, the extreme apical and extreme basal structures of this highly polarized cell originate in the same location and at the same time very early during parasite replication.


Nature | 2002

The Plasmodium genome database

Jessica C. Kissinger; Brian P. Brunk; Jonathan Crabtree; Martin Fraunholz; Bindu Gajria; Arthur J. Milgram; David Pearson; Jonathan Schug; Amit Bahl; Sharon J. Diskin; Hagai Ginsburg; Gregory R. Grant; Dinesh Gupta; Philip Labo; Li Li; Matthew D. Mailman; Shannon K. McWeeney; Patricia L. Whetzel; Christian J. Stoeckert; David S. Roos

Designing and mining a eukaryotic genomics resource.


Frontiers in Cellular and Infection Microbiology | 2012

Intracellular staphylococcus aureus: Live-in and let die

Martin Fraunholz; Bhanu Sinha

Staphylococcus aureus uses a plethora of virulence factors to accommodate a diversity of niches in its human host. Aside from the classical manifestations of S. aureus-induced diseases, the pathogen also invades and survives within mammalian host cells.The survival strategies of the pathogen are as diverse as strains or host cell types used. S. aureus is able to replicate in the phagosome or freely in the cytoplasm of its host cells. It escapes the phagosome of professional and non-professional phagocytes, subverts autophagy, induces cell death mechanisms such as apoptosis and pyronecrosis, and even can induce anti-apoptotic programs in phagocytes. The focus of this review is to present a guide to recent research outlining the variety of intracellular fates of S. aureus.


International Journal of Medical Microbiology | 2010

Staphylococcus aureus host cell invasion and post-invasion events

Bhanu Sinha; Martin Fraunholz

Staphylococcus aureus is now recognized as a facultative intracellular pathogen. The aim of this review is to discuss novel data regarding the invasion mechanism and post-invasion events with a focus on the fate of the infected phagosome in non-professional phagocytes and the role of S. aureus alpha-toxin.


PLOS Pathogens | 2012

The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression

Tobias Geiger; Patrice Francois; Manuel Liebeke; Martin Fraunholz; Christiane Goerke; Bernhard Krismer; Jacques Schrenzel; Michael Lalk; Christiane Wolz

The stringent response is initiated by rapid (p)ppGpp synthesis, which leads to a profound reprogramming of gene expression in most bacteria. The stringent phenotype seems to be species specific and may be mediated by fundamentally different molecular mechanisms. In Staphylococcus aureus, (p)ppGpp synthesis upon amino acid deprivation is achieved through the synthase domain of the bifunctional enzyme RSH (RelA/SpoT homolog). In several firmicutes, a direct link between stringent response and the CodY regulon was proposed. Wild-type strain HG001, rshSyn, codY and rshSyn, codY double mutants were analyzed by transcriptome analysis to delineate different consequences of RSH-dependent (p)ppGpp synthesis after induction of the stringent response by amino-acid deprivation. Under these conditions genes coding for major components of the protein synthesis machinery and nucleotide metabolism were down-regulated only in rsh positive strains. Genes which became activated upon (p)ppGpp induction are mostly regulated indirectly via de-repression of the GTP-responsive repressor CodY. Only seven genes, including those coding for the cytotoxic phenol-soluble modulins (PSMs), were found to be up-regulated via RSH independently of CodY. qtRT-PCR analyses of hallmark genes of the stringent response indicate that an RSH activating stringent condition is induced after uptake of S. aureus in human polymorphonuclear neutrophils (PMNs). The RSH activity in turn is crucial for intracellular expression of psms. Accordingly, rshSyn and rshSyn, codY mutants were less able to survive after phagocytosis similar to psm mutants. Intraphagosomal induction of psmα1-4 and/or psmβ1,2 could complement the survival of the rshSyn mutant. Thus, an active RSH synthase is required for intracellular psm expression which contributes to survival after phagocytosis.


Nucleic Acids Research | 2002

PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished)

Amit Bahl; Brian P. Brunk; Ross L. Coppel; Jonathan Crabtree; Sharon J. Diskin; Martin Fraunholz; Gregory R. Grant; Dinesh Gupta; Robert L. Huestis; Jessica C. Kissinger; Philip Labo; Li Li; Shannon K. McWeeney; Arthur J. Milgram; David S. Roos; Jonathan Schug; Christian J. Stoeckert

PlasmoDB (http://PlasmoDB.org) is the official database of the Plasmodium falciparum genome sequencing consortium. This resource incorporates finished and draft genome sequence data and annotation emerging from Plasmodium sequencing projects. PlasmoDB currently houses information from five parasite species and provides tools for cross-species comparisons. Sequence information is also integrated with other genomic-scale data emerging from the Plasmodium research community, including gene expression analysis from EST, SAGE and microarray projects. The relational schemas used to build PlasmoDB [Genomics Unified Schema (GUS) and RNA Abundance Database (RAD)] employ a highly structured format to accommodate the diverse data types generated by sequence and expression projects. A variety of tools allow researchers to formulate complex, biologically based queries of the database. A version of the database is also available on CD-ROM (Plasmodium GenePlot), facilitating access to the data in situations where Internet access is difficult (e.g. by malaria researchers working in the field). The goal of PlasmoDB is to enhance utilization of the vast quantities of data emerging from genome-scale projects by the global malaria research community.

Collaboration


Dive into the Martin Fraunholz's collaboration.

Top Co-Authors

Avatar

David S. Roos

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Thomas Rudel

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhanu Sinha

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge