Stefan Zauner
University of Marburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stefan Zauner.
Nature | 2001
Susan E. Douglas; Stefan Zauner; Martin Fraunholz; Margaret J. Beaton; Susanne Penny; Lang-Tuo Deng; Xiaonan Wu; Michael Reith; Thomas Cavalier-Smith; Uwe G. Maier
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly understood. Cryptomonads are the only chromophytes that still retain the enslaved red algal nucleus as a minute nucleomorph. Here we report complete sequences for all three nucleomorph chromosomes from the cryptomonad Guillardia theta. This tiny 551-kilobase eukaryotic genome is the most gene-dense known, with only 17 diminutive spliceosomal introns and 44 overlapping genes. Marked evolutionary compaction hundreds of millions of years ago eliminated nearly all the nucleomorph genes for metabolic functions, but left 30 for chloroplast-located proteins. To allow expression of these proteins, nucleomorphs retain hundreds of genetic-housekeeping genes. Nucleomorph DNA replication and periplastid protein synthesis require the import of many nuclear gene products across endoplasmic reticulum and periplastid membranes. The chromosomes have centromeres, but possibly only one loop domain, offering a means for studying eukaryotic chromosome replication, segregation and evolution.
Nature | 2012
Bruce A. Curtis; Goro Tanifuji; Fabien Burki; Ansgar Gruber; Manuel Irimia; Shinichiro Maruyama; Maria Cecilia Arias; Steven G. Ball; Gillian H. Gile; Yoshihisa Hirakawa; Julia F. Hopkins; Alan Kuo; Stefan A. Rensing; Jeremy Schmutz; Aikaterini Symeonidi; Marek Eliáš; Robert J M Eveleigh; Emily K. Herman; Mary J. Klute; Takuro Nakayama; Miroslav Oborník; Adrian Reyes-Prieto; E. Virginia Armbrust; Stephen J. Aves; Robert G. Beiko; Pedro M. Coutinho; Joel B. Dacks; Dion G. Durnford; Naomi M. Fast; Beverley R. Green
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote–eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
Molecular Biology and Evolution | 2008
Ruth Frommolt; Sonja Werner; Harald Paulsen; Reimund Goss; Christian Wilhelm; Stefan Zauner; Uwe G. Maier; Arthur R. Grossman; Debashish Bhattacharya; Martin Lohr
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-encoded chromist proteins should be most closely related to their red algal homologs. Here we analyzed the biosynthetic pathway of carotenoids that are essential components of all photosynthetic eukaryotes and find a mosaic evolutionary origin of these enzymes in chromists. Surprisingly, about one-third (5/16) of the proteins are most closely related to green algal homologs with three branching within or sister to the early-diverging Prasinophyceae. This phylogenetic association is corroborated by shared diagnostic indels and the syntenic arrangement of a specific gene pair involved in the photoprotective xanthophyll cycle. The combined data suggest that the prasinophyte genes may have been acquired before the ancient split of stramenopiles, haptophytes, cryptophytes, and putatively also dinoflagellates. The latter point is supported by the observed monophyly of alveolates and stramenopiles in most molecular trees. One possible explanation for our results is that the green genes are remnants of a cryptic endosymbiosis that occurred early in chromalveolate evolution; that is, prior to the postulated split of stramenopiles, alveolates, haptophytes, and cryptophytes. The subsequent red algal capture would have led to the loss or replacement of most green genes via intracellular gene transfer from the new endosymbiont. We argue that the prasinophyte genes were retained because they enhance photosynthetic performance in chromalveolates, thus extending the niches available to these organisms. The alternate explanation of green gene origin via serial endosymbiotic or horizontal gene transfers is also plausible, but the latter would require the independent origins of the same five genes in some or all the different chromalveolate lineages.
Applied Microbiology and Biotechnology | 2009
Andrew Bozarth; Uwe G. Maier; Stefan Zauner
Diatoms have played a decisive role in the ecosystem for millions of years as one of the foremost set of oxygen synthesizers on earth and as one of the most important sources of biomass in oceans. Previously, diatoms have been almost exclusively limited to academic research with little consideration of their practical uses beyond the most rudimentary of applications. Efforts have been made to establish them as decisively useful in such commercial and industrial applications as the carbon neutral synthesis of fuels, pharmaceuticals, health foods, biomolecules, materials relevant to nanotechnology, and bioremediators of contaminated water. Progress in the technologies of diatom molecular biology such as genome projects from model organisms, as well as culturing conditions and photobioreactor efficiency, may be able to be combined in the near future to make diatoms a lucrative source of novel substances with widespread relevance.
Journal of Molecular Evolution | 2006
Sven B. Gould; Maik S. Sommer; Katalin Hadfi; Stefan Zauner; Peter G. Kroth; Uwe G. Maier
The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment. Therefore two sets of nuclear-encoded proteins imported into the endosymbiont can be distinguished and their topogenic signals may serve as good indicators for studying protein targeting and subsequent transport across the outermost membranes of the cryptophyte plastid. We isolated genes encoding enzymes involved in two different biochemical pathways, both of which are predicted to be localized inside the periplastidal compartment, and compared their topogenic signals to those of precursor proteins for the plastid stroma, which are encoded on either the nucleus or the nucleomorph. By this and exemplary in vitro and in vivo analyses of the topogenic signal of one protein localized in the periplastidal compartment, we present new data implicating the mechanism of targeting and transport of proteins to and across the outermost plastid membranes. Furthermore, we demonstrate that one single, but conserved amino acid is the triggering key for the discrimination between nucleus-encoded plastid and periplastidal proteins.
Molecular Biology and Evolution | 2009
Franziska Hempel; Lars Bullmann; Julia Lau; Stefan Zauner; Uwe G. Maier
The diatom Phaeodactylum tricornutum harbors a plastid that is surrounded by four membranes and evolved by way of secondary endosymbiosis. Like land plants, most of its plastid proteins are encoded as preproteins on the nuclear genome of the host cell and are resultantly redirected into the organelle. Because two more membranes are present in diatoms than the one pair surrounding primary plastids, the targeting situation is obviously different and more complex. In this work, we focus on preprotein transport across the second outermost plastid membrane -- an issue that was experimentally inaccessible until now. We provide first indications that our hypothesis of an ERAD (ER-associated degradation)-derived preprotein transport system might be correct. Our data demonstrate that the symbiont-specific Der1 proteins, sDer1-1 and sDer1-2, form an oligomeric complex within the second outermost membrane of the complex plastid. Moreover, we present first evidence that the complex interacts with transit peptides of preproteins being transported across this membrane into the periplastidal compartment but not with transit peptides of stromal-targeted proteins. Thus, the sDer1 complex might have an additional role in discriminating preproteins that are transported across the two outermost membranes from preproteins directed across all four membranes of the complex plastid. Altogether, our studies of the symbiont-specific ERAD-like machinery of diatoms suggest that a preexisting cellular machinery was recycled to fulfill a novel function during the transition of a former free-living eukaryote into a secondary endosymbiont.
Journal of Eukaryotic Microbiology | 2009
Kathrin Bolte; Lars Bullmann; Franziska Hempel; Andrew Bozarth; Stefan Zauner; Uwe G. Maier
ABSTRACT. Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus‐encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus‐encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre‐existing ones to new requirements in secondary plastids.
BMC Biology | 2008
Uwe G. Maier; Andrew Bozarth; Helena T. Funk; Stefan Zauner; Stefan A. Rensing; Christian Schmitz-Linneweber; Thomas Börner; Michael Tillich
BackgroundThe gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.ResultsWe inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.ConclusionOur inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.
Microbial Cell Factories | 2011
Franziska Hempel; Andrew Bozarth; Nicole Lindenkamp; Andreas Klingl; Stefan Zauner; Uwe Linne; Alexander Steinbüchel; Uwe G. Maier
BackgroundPoly-3-hydroxybutyrate (PHB) is a polyester with thermoplastic properties that is naturally occurring and produced by such bacteria as Ralstonia eutropha H16 and Bacillus megaterium. In contrast to currently utilized plastics and most synthetic polymers, PHB is biodegradable, and its production is not dependent on fossil resources making this bioplastic interesting for various industrial applications.ResultsIn this study, we report on introducing the bacterial PHB pathway of R. eutropha H16 into the diatom Phaeodactylum tricornutum, thereby demonstrating for the first time that PHB production is feasible in a microalgal system. Expression of the bacterial enzymes was sufficient to result in PHB levels of up to 10.6% of algal dry weight. The bioplastic accumulated in granule-like structures in the cytosol of the cells, as shown by light and electron microscopy.ConclusionsOur studies demonstrate the great potential of microalgae like the diatom P. tricornutum to serve as solar-powered expression factories and reveal great advantages compared to plant based production systems.
Genome Biology and Evolution | 2011
Gregor Felsner; Maik S. Sommer; Nicole Gruenheit; Franziska Hempel; Daniel Moog; Stefan Zauner; William Martin; Uwe G. Maier
The plastids of cryptophytes, haptophytes, and heterokontophytes (stramenopiles) (together once known as chromists) are surrounded by four membranes, reflecting the origin of these plastids through secondary endosymbiosis. They share this trait with apicomplexans, which are alveolates, the plastids of which have been suggested to stem from the same secondary symbiotic event and therefore form a phylogenetic clade, the chromalveolates. The chromists are quantitatively the most important eukaryotic contributors to primary production in marine ecosystems. The mechanisms of protein import across their four plastid membranes are still poorly understood. Components of an endoplasmic reticulum-associated degradation (ERAD) machinery in cryptophytes, partially encoded by the reduced genome of the secondary symbiont (the nucleomorph), are implicated in protein transport across the second outermost plastid membrane. Here, we show that the haptophyte Emiliania huxleyi, like cryptophytes, stramenopiles, and apicomplexans, possesses a nuclear-encoded symbiont-specific ERAD machinery (SELMA, symbiont-specific ERAD-like machinery) in addition to the host ERAD system, with targeting signals that are able to direct green fluorescent protein or yellow fluorescent protein to the predicted cellular localization in transformed cells of the stramenopile Phaeodactylum tricornutum. Phylogenies of the duplicated ERAD factors reveal that all SELMA components trace back to a red algal origin. In contrast, the host copies of cryptophytes and haptophytes associate with the green lineage to the exclusion of stramenopiles and alveolates. Although all chromalveolates with four membrane-bound plastids possess the SELMA system, this has apparently not arisen in a single endosymbiotic event. Thus, our data do not support the chromalveolate hypothesis.