Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clinton T. Baldwin is active.

Publication


Featured researches published by Clinton T. Baldwin.


Nature Genetics | 2007

The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease

Ekaterina Rogaeva; Yan Meng; Joseph H. Lee; Yongjun Gu; Toshitaka Kawarai; Fanggeng Zou; Taiichi Katayama; Clinton T. Baldwin; Rong Cheng; Hiroshi Hasegawa; Fusheng Chen; Nobuto Shibata; Kathryn L. Lunetta; Raphaelle Pardossi-Piquard; Christopher Bohm; Yosuke Wakutani; L. Adrienne Cupples; Karen T. Cuenco; Robert C. Green; Lorenzo Pinessi; Innocenzo Rainero; Sandro Sorbi; Amalia C. Bruni; Ranjan Duara; Robert P. Friedland; Rivka Inzelberg; Wolfgang Hampe; Hideaki Bujo; You-Qiang Song; Olav M. Andersen

The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid β peptide (Aβ) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Aβ-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.


Nature | 2004

Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms

Maya Saleh; John P. Vaillancourt; Rona K. Graham; Matthew Huyck; Srinivasa M. Srinivasula; Emad S. Alnemri; Martin H. Steinberg; Vikki G. Nolan; Clinton T. Baldwin; Richard S. Hotchkiss; Timothy G. Buchman; Barbara A. Zehnbauer; Michael R. Hayden; Lindsay A. Farrer; Sophie Roy; Donald W. Nicholson

Caspases mediate essential key proteolytic events in inflammatory cascades and the apoptotic cell death pathway. Human caspases functionally segregate into two distinct subfamilies: those involved in cytokine maturation (caspase-1, -4 and -5) and those involved in cellular apoptosis (caspase-2, -3, -6, -7, -8, -9 and -10). Although caspase-12 is phylogenetically related to the cytokine maturation caspases, in mice it has been proposed as a mediator of apoptosis induced by endoplasmic reticulum stress including amyloid-β cytotoxicity, suggesting that it might contribute to the pathogenesis of Alzheimers disease. Here we show that a single nucleotide polymorphism in caspase-12 in humans results in the synthesis of either a truncated protein (Csp12-S) or a full-length caspase proenzyme (Csp12-L). The read-through single nucleotide polymorphism encoding Csp12-L is confined to populations of African descent and confers hypo-responsiveness to lipopolysaccharide-stimulated cytokine production in ex vivo whole blood, but has no significant effect on apoptotic sensitivity. In a preliminary study, we find that the frequency of the Csp12-L allele is increased in African American individuals with severe sepsis. Thus, Csp12-L attenuates the inflammatory and innate immune response to endotoxins and in doing so may constitute a risk factor for developing sepsis.


Nature Genetics | 2005

Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia

Paola Sebastiani; Marco F. Ramoni; Vikki G. Nolan; Clinton T. Baldwin; Martin H. Steinberg

Sickle cell anemia (SCA) is a paradigmatic single gene disorder caused by homozygosity with respect to a unique mutation at the β-globin locus. SCA is phenotypically complex, with different clinical courses ranging from early childhood mortality to a virtually unrecognized condition. Overt stroke is a severe complication affecting 6–8% of individuals with SCA. Modifier genes might interact to determine the susceptibility to stroke, but such genes have not yet been identified. Using Bayesian networks, we analyzed 108 SNPs in 39 candidate genes in 1,398 individuals with SCA. We found that 31 SNPs in 12 genes interact with fetal hemoglobin to modulate the risk of stroke. This network of interactions includes three genes in the TGF-β pathway and SELP, which is associated with stroke in the general population. We validated this model in a different population by predicting the occurrence of stroke in 114 individuals with 98.2% accuracy.


PLOS ONE | 2012

Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani; Nadia Solovieff; Andrew T. DeWan; Kyle M. Walsh; Annibale Alessandro Puca; Stephen W. Hartley; Efthymia Melista; Stacy L. Andersen; Daniel A. Dworkis; Jemma B. Wilk; Richard H. Myers; Martin H. Steinberg; Monty Montano; Clinton T. Baldwin; Josephine Hoh; Thomas T. Perls

Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (e.g., lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity in 801 centenarians (median age at death 104 years) and 914 genetically matched healthy controls. Using these data, we built a genetic model that includes 281 single nucleotide polymorphisms (SNPs) and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity, and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians (median age 100 years). Consistent with the hypothesis that the genetic contribution is largest with the oldest ages, the sensitivity of the model increased in the independent cohort with older and older ages (71% to classify subjects with an age at death>102 and 85% to classify subjects with an age at death>105). For further validation, we applied the model to an additional, unmatched 60 centenarians (median age 107 years) resulting in 78% sensitivity, and 2863 unmatched controls with 61% specificity. The 281 SNPs include the SNP rs2075650 in TOMM40/APOE that reached irrefutable genome wide significance (posterior probability of association = 1) and replicated in the independent cohort. Removal of this SNP from the model reduced the accuracy by only 1%. Further in-silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different “genetic signatures” of varying predictive values for exceptional longevity. The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets. The different signatures may help dissect this complex phenotype into sub-phenotypes of exceptional longevity.


Blood | 2011

Fetal hemoglobin in sickle cell anemia

Idowu Akinsheye; Abdulrahman Alsultan; Nadia Solovieff; Duyen Ngo; Clinton T. Baldwin; Paola Sebastiani; David H.K. Chui; Martin H. Steinberg

Fetal hemoglobin (HbF) is the major genetic modulator of the hematologic and clinical features of sickle cell disease, an effect mediated by its exclusion from the sickle hemoglobin polymer. Fetal hemoglobin genes are genetically regulated, and the level of HbF and its distribution among sickle erythrocytes is highly variable. Some patients with sickle cell disease have exceptionally high levels of HbF that are associated with the Senegal and Saudi-Indian haplotype of the HBB-like gene cluster; some patients with different haplotypes can have similarly high HbF. In these patients, high HbF is associated with generally milder but not asymptomatic disease. Studying these persons might provide additional insights into HbF gene regulation. HbF appears to benefit some complications of disease more than others. This might be related to the premature destruction of erythrocytes that do not contain HbF, even though the total HbF concentration is high. Recent insights into HbF regulation have spurred new efforts to induce high HbF levels in sickle cell disease beyond those achievable with the current limited repertory of HbF inducers.


Molecular Psychiatry | 2005

Polymorphisms in FKBP5 are associated with peritraumatic dissociation in medically injured children

Karestan C. Koenen; Glenn N. Saxe; Shaun Purcell; Jordan W. Smoller; D Bartholomew; Alisa Miller; Erin Hall; Julie B. Kaplow; Michelle Bosquet; Steve Moulton; Clinton T. Baldwin

Polymorphisms in FKBP5 are associated with peritraumatic dissociation in medically injured children


Translational Psychiatry | 2012

Genome-wide association study of Alzheimer's disease

M. I. Kamboh; F Y Demirci; Xiaoqian Wang; Ryan L. Minster; Minerva M. Carrasquillo; Vernon S. Pankratz; Steven G. Younkin; Andrew J. Saykin; Gyungah Jun; Clinton T. Baldwin; Mark W. Logue; Jacqueline Buros; Lindsay A. Farrer; Margaret A. Pericak-Vance; Jonathan L. Haines; Robert A. Sweet; Mary Ganguli; Eleanor Feingold; Steven T. DeKosky; Oscar L. Lopez; M. Michael Barmada

In addition to apolipoprotein E (APOE), recent large genome-wide association studies (GWASs) have identified nine other genes/loci (CR1, BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33, EPHA1 and ABCA7) for late-onset Alzheimers disease (LOAD). However, the genetic effect attributable to known loci is about 50%, indicating that additional risk genes for LOAD remain to be identified. In this study, we have used a new GWAS data set from the University of Pittsburgh (1291 cases and 938 controls) to examine in detail the recently implicated nine new regions with Alzheimers disease (AD) risk, and also performed a meta-analysis utilizing the top 1% GWAS single-nucleotide polymorphisms (SNPs) with P<0.01 along with four independent data sets (2727 cases and 3336 controls) for these SNPs in an effort to identify new AD loci. The new GWAS data were generated on the Illumina Omni1-Quad chip and imputed at ∼2.5 million markers. As expected, several markers in the APOE regions showed genome-wide significant associations in the Pittsburg sample. While we observed nominal significant associations (P<0.05) either within or adjacent to five genes (PICALM, BIN1, ABCA7, MS4A4/MS4A6E and EPHA1), significant signals were observed 69–180 kb outside of the remaining four genes (CD33, CLU, CD2AP and CR1). Meta-analysis on the top 1% SNPs revealed a suggestive novel association in the PPP1R3B gene (top SNP rs3848140 with P=3.05E–07). The association of this SNP with AD risk was consistent in all five samples with a meta-analysis odds ratio of 2.43. This is a potential candidate gene for AD as this is expressed in the brain and is involved in lipid metabolism. These findings need to be confirmed in additional samples.


Blood Cells Molecules and Diseases | 2008

BCL11A is a major HbF quantitative trait locus in three different populations with β-hemoglobinopathies ☆

Amanda Sedgewick; Nadia Timofeev; Paola Sebastiani; Jason C.C. So; Edmond S. K. Ma; Li Chong Chan; Goonnapa Fucharoen; Supan Fucharoen; Cynara G. Barbosa; Badri N. Vardarajan; Lindsay A. Farrer; Clinton T. Baldwin; Martin H. Steinberg; David H.K. Chui

Increased HbF levels or F-cell (HbF containing erythrocyte) numbers can ameliorate the disease severity of beta-thalassemia major and sickle cell anemia. Recent genome-wide association studies reported that single nucleotide polymorphisms (SNPs) in BCL11A gene on chromosome 2p16.1 were correlated with F-cells among healthy northern Europeans, and HbF among Sardinians with beta-thalassemias. In this study, we showed that SNPs in BCL11A were associated with F-cell numbers in Chinese with beta-thalassemia trait, and with HbF levels in Thais with either beta-thalassemia or HbE trait and in African Americans with sickle cell anemia. Taken together, the data suggest that the functional motifs responsible for modulating F-cells and HbF levels reside within a 3 kb region in the second intron of BCL11A.


Molecular Psychiatry | 2013

A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha ( RORA ) gene as a significant risk locus

Mark W. Logue; Clinton T. Baldwin; Guia Guffanti; Efi Melista; Erika J. Wolf; Annemarie F. Reardon; Monica Uddin; Derek E. Wildman; Sandro Galea; Karestan C. Koenen; Mark W. Miller

We describe the results of the first genome-wide association study (GWAS) of post-traumatic stress disorder (PTSD) performed using trauma-exposed white non-Hispanic participants from a cohort of veterans and their intimate partners (295 cases and 196 controls). Several single-nucleotide polymorphisms (SNPs) yielded evidence of association. One SNP (rs8042149), located in the retinoid-related orphan receptor alpha gene (RORA), reached genome-wide significance. Nominally significant associations were observed for other RORA SNPs in two African-American replication samples—one from the veteran cohort (43 cases and 41 controls) and another independent cohort (100 cases and 421 controls). However, only the associated SNP from the veteran African-American replication sample survived gene-level multiple-testing correction. RORA has been implicated in prior GWAS studies of psychiatric disorders and is known to have an important role in neuroprotection and other behaviorally relevant processes. This study represents an important step toward identifying the genetic underpinnings of PTSD.


JAMA Neurology | 2011

A comprehensive genetic association study of Alzheimer disease in African Americans.

Mark W. Logue; Matthew Schu; Badri N. Vardarajan; Jacki Buros; Robert C. Green; Rodney C.P. Go; Patrick Griffith; Thomas O. Obisesan; Rhonna Shatz; Amy R. Borenstein; L. Adrienne Cupples; Kathryn L. Lunetta; M. Daniele Fallin; Clinton T. Baldwin; Lindsay A. Farrer

OBJECTIVES To evaluate the association of genetic variation with late-onset Alzheimer disease (AD) in African Americans, including genes implicated in recent genome-wide association studies of whites. DESIGN We analyzed a genome-wide set of 2.5 million imputed markers to evaluate the genetic basis of AD in an African American population. SUBJECTS Five hundred thirteen well-characterized African American AD cases and 496 cognitively normal African American control subjects. SETTING Data were collected from multiple sites as part of the Multi-Institutional Research on Alzheimer Genetic Epidemiology (MIRAGE) Study and the Henry Ford Health System as part of the Genetic and Environmental Risk Factors for Alzheimer Disease Among African Americans (GenerAAtions) Study. RESULTS Several significant single-nucleotide polymorphisms (SNPs) were observed in the region of the apolipoprotein E gene (APOE). After adjusting for the confounding effects of APOE genotype, one of these SNPs, rs6859 in PVRL2, remained significantly associated with AD (P = .0087). Association was also observed with SNPs in CLU, PICALM, BIN1, EPHA1, MS4A, ABCA7, and CD33, although the effect direction for some SNPs and the most significant SNPs differed from findings in data sets consisting of whites. Finally, using the African American genome-wide association study data set as a discovery sample, we obtained suggestive evidence of association with SNPs for several novel candidate genes. CONCLUSIONS Some genes contribute to AD pathogenesis in both white and African American cohorts, although it is unclear whether the causal variants are the same. A larger African American sample will be needed to confirm novel gene associations, which may be population specific.

Collaboration


Dive into the Clinton T. Baldwin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert C. Green

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge