Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin I. Lind is active.

Publication


Featured researches published by Martin I. Lind.


Evolution | 2014

Intralocus sexual conflict and environmental stress.

David Berger; Karl Grieshop; Martin I. Lind; Julieta Goenaga; Alexei A. Maklakov; Göran Arnqvist

Intralocus sexual conflict (IaSC) occurs when selection at a given locus favors different alleles in males and females, placing a fundamental constraint on adaptation. However, the relative impact of IaSC on adaptation may become reduced in stressful environments that expose conditionally deleterious mutations to selection. The genetic correlation for fitness between males and females (rMF) provides a quantification of IaSC across the genome. We compared IaSC at a benign (29°C) and a stressful (36°C) temperature by estimating rMFs in two natural populations of the seed beetle Callosobruchus maculatus using isofemale lines. In one population, we found substantial IaSC under benign conditions signified by a negative rMF (−0.51) and, as predicted, a significant reduction of IaSC under stress signified by a reversed and positive rMF (0.21). The other population displayed low IaSC at both temperatures (rMF: 0.38; 0.40). In both populations, isofemale lines harboring alleles beneficial to males but detrimental to females at benign conditions tended to show overall low fitness under stress. These results offer support for low IaSC under stress and suggest that environmentally sensitive and conditionally deleterious alleles that are sexually selected in males mediate changes in IaSC. We discuss implications for adaptive evolution in sexually reproducing populations.


Journal of Animal Ecology | 2013

Hot tadpoles from cold environments need more nutrients – life history and stoichiometry reflects latitudinal adaptation

Antonia Liess; Owen Rowe; Junwen Guo; Gustaf Thomsson; Martin I. Lind

1. High-latitude species (and populations within species) are adapted to short and cold summers. They often have high growth and development rates to fully use the short growing season and mature before the onset of winter. 2. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations to their molecular consequences in body nutrient composition in Rana temporaria tadpoles. 3. Temperature and food quality were manipulated during the development of tadpoles from Arctic and Boreal origins. We determined tadpole growth rate, development rate, body size and nutrient content, to test whether (i) Arctic tadpoles could realize higher growth rates and development rates with the help of higher-quality food even when food quantity was unchanged, (ii) Arctic and Boreal tadpoles differed in their stoichiometric (and life history) response to temperature changes, (iii) higher growth rates lead to higher tadpole P content (growth rate hypothesis) and (iv) allometric scaling affects tadpole nutrient allocation. 4. We found that especially Arctic tadpoles grew and developed faster with the help of higher-quality food and that tadpoles differed in their stoichiometric (and life history) response to temperature changes depending on region of origin (probably due to different temperature optima). There was no evidence that higher growth rates mediated the positive effect of temperature on tadpole P content. On the contrary, the covariate growth rate was negatively connected with tadpole P content (refuting the growth rate hypothesis). Lastly, tadpole P content was not related to body size, but tadpole C content was higher in larger tadpoles, probably due to increased fat storage. 5. We conclude that temperature had a strong effect on tadpole life history, nutrient demand and stoichiometry and that this effect depended on the evolved life history.


Proceedings of the Royal Society B: Biological Sciences | 2015

The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection.

Martin I. Lind; Kylie Yarlett; Julia Reger; Mauricio J. Carter; Andrew P. Beckerman

Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.


The American Naturalist | 2016

Intralocus Sexual Conflict and the Tragedy of the Commons in Seed Beetles

David Berger; Ivain Martinossi-Allibert; Karl Grieshop; Martin I. Lind; Alexei A. Maklakov; Göran Arnqvist

The evolution of male traits that inflict direct harm on females during mating interactions can result in a so-called tragedy of the commons, where selfish male strategies depress population viability. This tragedy of the commons can be magnified by intralocus sexual conflict (IaSC) whenever alleles that reduce fecundity when expressed in females spread in the population because of their benefits in males. We evaluated this prediction by detailed phenotyping of 73 isofemale lines of the seed beetle Callosobruchus maculatus. We quantified genetic variation in life history and morphology, as well as associated covariance in male and female adult reproductive success. In parallel, we created replicated artificial populations of each line and measured their productivity. Genetic constraints limited independent trait expression in the sexes, and we identified several instances of sexually antagonistic covariance between traits and fitness, signifying IaSC. Population productivity was strongly positively correlated to female adult reproductive success but uncorrelated with male reproductive success. Moreover, male (female) phenotypic optima for several traits under sexually antagonistic selection were exhibited by the genotypes with the lowest (highest) population productivity. Our study forms a direct link between individual-level sex-specific selection and population demography and places life-history traits at the epicenter of these dynamics.


Evolution | 2016

Selection on learning performance results in the correlated evolution of sexual dimorphism in life history

Martyna Zwoinska; Martin I. Lind; Maria Cortazar-Chinarro; Mark Ramsden; Alexei A. Maklakov

The evolution of learning can be constrained by trade‐offs. As male and female life histories often diverge, the relationship between learning and fitness may differ between the sexes. However, because sexes share much of their genome, intersexual genetic correlations can prevent males and females from reaching their sex‐specific optima resulting in intralocus sexual conflict (IaSC). To investigate if IaSC constraints sex‐specific evolution of learning, we selected Caenorhabditis remanei nematode females for increased or decreased olfactory learning performance and measured learning, life span (in mated and virgin worms), reproduction, and locomotory activity in both sexes. Males from downward‐selected female lines had higher locomotory activity and longer virgin life span but sired fewer progeny than males from upward‐selected female lines. In contrast, we found no effect of selection on female reproduction and downward‐selected females showed higher locomotory activity but lived shorter as virgins than upward‐selected females. Strikingly, selection on learning performance led to the reversal of sexual dimorphism in virgin life span. We thus show sex‐specific trade‐offs between learning, reproduction, and life span. Our results support the hypothesis that selection on learning performance can shape the evolution of sexually dimorphic life histories via sex‐specific genetic correlations.


Molecular Ecology | 2013

Phenotypic plasticity in the hepatic transcriptome of the European common frog (Rana temporaria): the interplay between environmental induction and geographical lineage on developmental response

Frank Johansson; Nik Veldhoen; Martin I. Lind; Caren C. Helbing

Phenotypic plasticity might facilitate adaptation to new environmental conditions through the enhancement of initial survival of organisms. Once a population is established, further adaptation and diversification may occur through adaptive trait evolution. While several studies have found evidence for this mechanism using phenotypic traits, much less is known at the level of gene expression. Here, we use an islands system of frog populations that show local adaptation and phenotypic plasticity to pool drying conditions in development time until metamorphoses. We examined gene expression differences in Rana temporaria tadpole livers with respect to pool drying at the source population and in response to simulated pool drying in the laboratory. Using a MAGEX cDNA microarray and quantitative real‐time polymerase chain reaction (qPCR), we identified an increase in several gene transcripts in response to artificial pool drying including thyroid hormone receptor alpha and beta, carbamoyl phosphate synthetase 1, ornithine transcarbamylase and catalase. In addition, these gene transcripts also showed greater abundance in island populations that developed faster. Hence, the gene transcripts were related to both constitutive response (higher levels in island populations that developed faster) and plastic response (increased abundance under decreasing water levels). This pattern is in accordance with genetic accommodation, which predicts similarities between plastic gene expression and constitutive expression in locally adapted populations.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016

Sex-specific Tradeoffs With Growth and Fitness Following Life-span Extension by Rapamycin in an Outcrossing Nematode, Caenorhabditis remanei

Martin I. Lind; Martyna Zwoinska; Sara Meurling; Hanne Carlsson; Alexei A. Maklakov

Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase.


Functional Ecology | 2015

Evolution of differential maternal age effects on male and female offspring development and longevity

Martin I. Lind; Elena C. Berg; Ghazal Alavioon; Alexei A. Maklakov

Summary 1. Maternal age effects on life-history traits, including longevity, are widespread and can be seen as a manifestation of ageing. However, little is known about how maternal life span may influence the maternal age effect. At a given chronological age, a long-lived parent may be at a younger biological age than a short-lived parent and thus has a less severe parental age effect. However, earlier work using experimentally evolved short- and long-lived lines did not support this hypothesis. 2. We scored developmental time and longevity of 14 995 individual seed beetles, Callosobruchus maculatus derived from replicate short-lived and long-lived lines created via artificial selection on male life span. 3. Offspring from older mothers had shorter life span, which is consistent with most of the literature. 4. We found support for the hypothesis that detrimental maternal age effects evolve to be weaker under selection for long life span. However, this finding was only apparent in males, suggesting that maternal age affects male and female offspring differently. 5. These results suggest that sex-dependent parental age effects should be incorporated in the studies of longevity and ageing evolution and that selection on one sex can cause evolution of parental age effects in the other sex.


Journal of Animal Ecology | 2015

Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North

Antonia Liess; Junwen Guo; Martin I. Lind; Owen Rowe

Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can change key ecosystem functions.


Functional Ecology | 2017

Slow development as an evolutionary cost of long life

Martin I. Lind; Hwei-yen Chen; Sara Meurling; Ana Cristina Guevara Gil; Hanne Carlsson; Martyna Zwoinska; Johan Andersson; Tuuli Larva; Alexei A. Maklakov

Summary Life-history theory predicts a trade-off between early-life fitness and life span. While the focus traditionally has been on the fecundity-life span trade-off, there are strong reasons to expect trade-offs with growth rate and/or development time. We investigated the roles of growth rate and development time in the evolution of life span in two independent selection experiments in the outcrossing nematode Caenorhabditis remanei. First, we found that selection under heat-shock leads to the evolution of increased life span without fecundity costs, but at the cost of slower development. Thereafter, the putative evolutionary links between development time, growth rate, fecundity, heat-shock resistance and life span were independently assessed in the second experiment by directly selecting for fast or slow development. This experiment confirmed our initial findings, since selection for slow development resulted in the evolution of long life span and increased heat-shock resistance. Because there were no consistent trade-offs with growth rate or fecundity, our results highlight the key role of development rate – differentiation of the somatic cells per unit of time – in the evolution of life span. Since development time is under strong selection in nature, reduced somatic maintenance resulting in shorter life span may be a widespread cost of rapid development. A lay summary is available for this article.

Collaboration


Dive into the Martin I. Lind's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge