Martin J. Gunthorpe
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin J. Gunthorpe.
Nature | 2000
John B. Davis; Julie E. Gray; Martin J. Gunthorpe; Jonathan P. Hatcher; Phil T. Davey; Philip Overend; Mark Harries; Judi Latcham; Colin M. Clapham; Kirsty Atkinson; S. Hughes; Kim Rance; Evelyn Grau; Alex J. Harper; Perdita L. Pugh; Derek Rogers; Sharon Bingham; Andrew D. Randall; Steven A. Sheardown
The vanilloid receptor-1 (VR1) is a ligand-gated, non-selective cation channel expressed predominantly by sensory neurons. VR1 responds to noxious stimuli including capsaicin, the pungent component of chilli peppers, heat and extracellular acidification, and it is able to integrate simultaneous exposure to these stimuli. These findings and research linking capsaicin with nociceptive behaviours (that is, responses to painful stimuli in animals have led to VR1 being considered as important for pain sensation. Here we have disrupted the mouse VR1 gene using standard gene targeting techniques. Small diameter dorsal root ganglion neurons isolated from VR1-null mice lacked many of the capsaicin-, acid- and heat-gated responses that have been previously well characterized in small diameter dorsal root ganglion neurons from various species. Furthermore, although the VR1-null mice appeared normal in a wide range of behavioural tests, including responses to acute noxious thermal stimuli, their ability to develop carrageenan-induced thermal hyperalgesia was completely absent. We conclude that VR1 is required for inflammatory sensitization to noxious thermal stimuli but also that alternative mechanisms are sufficient for normal sensation of noxious heat.
British Journal of Pharmacology | 2000
Darren Smart; Martin J. Gunthorpe; Jeffrey C. Jerman; S. Nasir; Julie E. Gray; A I Muir; J K Chambers; Andrew D. Randall; John B. Davis
The endogenous cannabinoid anandamide was identified as an agonist for the recombinant human VR1 (hVR1) by screening a large array of bioactive substances using a FLIPR‐based calcium assay. Further electrophysiological studies showed that anandamide (10 or 100 μM) and capsaicin (1 μM) produced similar inward currents in hVR1 transfected, but not in parental, HEK293 cells. These currents were abolished by capsazepine (1 μM). In the FLIPR anandamide and capsaicin were full agonists at hVR1, with pEC50 values of 5.94±0.06 (n=5) and 7.13±0.11 (n=8) respectively. The response to anandamide was inhibited by capsazepine (pKB of 7.40±0.02, n=6), but not by the cannabinoid receptor antagonists AM630 or AM281. Furthermore, pretreatment with capsaicin desensitized the anandamide‐induced calcium response and vice versa. In conclusion, this study has demonstrated for the first time that anandamide acts as a full agonist at the human VR1.
Nature | 2002
Graham D. Smith; Martin J. Gunthorpe; Rosemary E. Kelsell; Philip David Hayes; P. Reilly; Paul Facer; James Wright; Jeffrey C. Jerman; Jean-Philippe Walhin; Lezanne Ooi; Julie Egerton; K. J. Charles; Darren Smart; Andrew D. Randall; Praveen Anand; John B. Davis
Vanilloid receptor-1 (VR1, also known as TRPV1) is a thermosensitive, nonselective cation channel that is expressed by capsaicin-sensitive sensory afferents and is activated by noxious heat, acidic pH and the alkaloid irritant capsaicin. Although VR1 gene disruption results in a loss of capsaicin responses, it has minimal effects on thermal nociception. This and other experiments—such as those showing the existence of capsaicin-insensitive heat sensors in sensory neurons—suggest the existence of thermosensitive receptors distinct from VR1. Here we identify a member of the vanilloid receptor/TRP gene family, vanilloid receptor-like protein 3 (VRL3, also known as TRPV3), which is heat-sensitive but capsaicin-insensitive. VRL3 is coded for by a 2,370-base-pair open reading frame, transcribed from a gene adjacent to VR1, and is structurally homologous to VR1. VRL3 responds to noxious heat with a threshold of about 39 °C and is co-expressed in dorsal root ganglion neurons with VR1. Furthermore, when heterologously expressed, VRL3 is able to associate with VR1 and may modulate its responses. Hence, not only is VRL3 a thermosensitive ion channel but it may represent an additional vanilloid receptor subunit involved in the formation of heteromeric vanilloid receptor channels.
Trends in Pharmacological Sciences | 2002
Martin J. Gunthorpe; Christopher D. Benham; Andrew D. Randall; John B. Davis
Following cloning of the vanilloid receptor 1 (VR1) at least four other related proteins have been identified. Together, these form a distinct subgroup of the transient receptor potential (TRP) family of ion channels. Members of the vanilloid receptor family (TRPV) are activated by a diverse range of stimuli, including heat, protons, lipids, phorbols, phosphorylation, changes in extracellular osmolarity and/or pressure, and depletion of intracellular Ca2+ stores. However, VR1 remains the only channel activated by vanilloids such as capsaicin. These channels are excellent molecular candidates to fulfil a range of sensory and/or cellular roles that are well characterized physiologically. Furthermore, as novel pharmacological targets, the vanilloid receptors have potential for the development of many future disease treatments.
Nature Neuroscience | 2002
M Trevisani; Darren Smart; Martin J. Gunthorpe; M Tognetto; M Barbieri; B Campi; Silvia Amadesi; Julie Gray; Jeffrey C. Jerman; Stephen J Brough; Davina E. Owen; Graham D. Smith; Andrew D. Randall; Selena Harrison; A Bianchi; John B. Davis; Pierangelo Geppetti
The vanilloid receptor-1 (VR1) is a heat-gated ion channel that is responsible for the burning sensation elicited by capsaicin. A similar sensation is reported by patients with esophagitis when they consume alcoholic beverages or are administered alcohol by injection as a medical treatment. We report here that ethanol activates primary sensory neurons, resulting in neuropeptide release or plasma extravasation in the esophagus, spinal cord or skin. Sensory neurons from trigeminal or dorsal root ganglia as well as VR1-expressing HEK293 cells responded to ethanol in a concentration-dependent and capsazepine-sensitive fashion. Ethanol potentiated the response of VR1 to capsaicin, protons and heat and lowered the threshold for heat activation of VR1 from ∼42°C to ∼34°C. This provides a likely mechanistic explanation for the ethanol-induced sensory responses that occur at body temperature and for the sensitivity of inflamed tissues to ethanol, such as might be found in esophagitis, neuralgia or wounds.
Pain | 2000
Philip David Hayes; Helen Jane Meadows; Martin J. Gunthorpe; Mark Harries; D.Malcolm Duckworth; William Cairns; David C. Harrison; Catherine E. Clarke; Kathryn Ellington; Rab K. Prinjha; Amanda Barton; Andrew D. Medhurst; Graham D. Smith; Simon Topp; Paul R. Murdock; Gareth J. Sanger; John Terrett; Owen Jenkins; Christopher D. Benham; Andrew D. Randall; Isro S Gloger; John B. Davis
&NA; Capsaicin, resiniferatoxin, protons or heat have been shown to activate an ion channel, termed the rat vanilloid receptor‐1 (rVR1), originally isolated by expression cloning for a capsaicin sensitive phenotype. Here we describe the cloning of a human vanilloid receptor‐1 (hVR1) cDNA containing a 2517 bp open reading frame that encodes a protein with 92% homology to the rat vanilloid receptor‐1. Oocytes or mammalian cells expressing this cDNA respond to capsaicin, pH and temperature by generating inward membrane currents. Mammalian cells transfected with human VR1 respond to capsaicin with an increase in intracellular calcium. The human VR1 has a chromosomal location of 17p13 and is expressed in human dorsal root ganglia and also at low levels throughout a wide range of CNS and peripheral tissues. Together the sequence homology, similar expression profile and functional properties confirm that the cloned cDNA represents the human orthologue of rat VR1.
British Journal of Pharmacology | 2009
Laetitia Mony; James N.C. Kew; Martin J. Gunthorpe; Pierre Paoletti
N‐methyl‐D‐aspartate receptors (NMDARs) are ion channels gated by glutamate, the major excitatory neurotransmitter in the mammalian central nervous system (CNS). They are widespread in the CNS and are involved in numerous physiological and pathological processes including synaptic plasticity, chronic pain and psychosis. Aberrant NMDAR activity also plays an important role in the neuronal loss associated with ischaemic insults and major degenerative disorders including Parkinsons and Alzheimers disease. Agents that target and alter NMDAR function may, thus, have therapeutic benefit. Interestingly, NMDARs are endowed with multiple extracellular regulatory sites that recognize ions or small molecule ligands, some of which are likely to regulate receptor function in vivo. These allosteric sites, which differ from agonist‐binding and channel‐permeation sites, provide means to modulate, either positively or negatively, NMDAR activity. The present review focuses on allosteric modulation of NMDARs containing the NR2B subunit. Indeed, the NR2B subunit confers a particularly rich pharmacology with distinct recognition sites for exogenous and endogenous allosteric ligands. Moreover, NR2B‐containing receptors, compared with other NMDAR subtypes, appear to contribute preferentially to pathological processes linked to overexcitation of glutamatergic pathways. The actions of extracellular H+, Mg2+, Zn2+, of polyamines and neurosteroids, and of the synthetic compounds ifenprodil and derivatives (‘prodils’) are presented. Particular emphasis is put upon the structural determinants and molecular mechanisms that underlie the effects exerted by these agents. A better understanding of how NR2B‐containing NMDARs (and NMDARs in general) operate and how they can be modulated should help define new strategies to counteract the deleterious effects of dysregulated NMDAR activity.
The Journal of Neuroscience | 2006
Fumimasa Amaya; Haibin Wang; Michael Costigan; Andrew Allchorne; Jon P. Hatcher; Julie Egerton; Tania O. Stean; Valerie Morisset; David Thomas Grose; Martin J. Gunthorpe; Iain P. Chessell; Simon Tate; Paula J. Green; Clifford J. Woolf
We used a mouse with deletion of exons 4, 5, and 6 of the SCN11A (sodium channel, voltage-gated, type XI, α) gene that encodes the voltage-gated sodium channel Nav1.9 to assess its contribution to pain. Nav1.9 is present in nociceptor sensory neurons that express TRPV1, bradykinin B2, and purinergic P2X3 receptors. In Nav1.9−/− mice, the non-inactivating persistent tetrodotoxin-resistant sodium TTXr-Per current is absent, whereas TTXr-Slow is unchanged. TTXs currents are unaffected by the mutation of Nav1.9. Pain hypersensitivity elicited by intraplantar administration of prostaglandin E2, bradykinin, interleukin-1β, capsaicin, and P2X3 and P2Y receptor agonists, but not NGF, is either reduced or absent in Nav1.9−/− mice, whereas basal thermal and mechanical pain sensitivity is unchanged. Thermal, but not mechanical, hypersensitivity produced by peripheral inflammation (intraplanatar complete Freunds adjuvant) is substantially diminished in the null allele mutant mice, whereas hypersensitivity in two neuropathic pain models is unchanged in the Nav1.9−/− mice. Nav1.9 is, we conclude, an effector of the hypersensitivity produced by multiple inflammatory mediators on nociceptor peripheral terminals and therefore plays a key role in mediating peripheral sensitization.
Neuropharmacology | 2004
Martin J. Gunthorpe; Harshad Kantilal Rami; Jeffrey C. Jerman; Darren Smart; Catherine H. Gill; Ellen M. Soffin; S.Luis Hannan; Sarah C. Lappin; Julie Egerton; Graham D. Smith; Angela Worby; L. Howett; Davina E. Owen; S. Nasir; Ceri H. Davies; Mervyn Thompson; Paul Adrian Wyman; Andrew D. Randall; John B. Davis
Vanilloid receptor-1 (TRPV1) is a non-selective cation channel, predominantly expressed by peripheral sensory neurones, which is known to play a key role in the detection of noxious painful stimuli, such as capsaicin, acid and heat. To date, a number of antagonists have been used to study the physiological role of TRPV1; however, antagonists such as capsazepine are somewhat compromised by non-selective actions at other receptors and apparent modality-specific properties. SB-366791 is a novel, potent, and selective, cinnamide TRPV1 antagonist isolated via high-throughput screening of a large chemical library. In a FLIPR-based Ca(2+)-assay, SB-366791 produced a concentration-dependent inhibition of the response to capsaicin with an apparent pK(b) of 7.74 +/- 0.08. Schild analysis indicated a competitive mechanism of action with a pA2 of 7.71. In electrophysiological experiments, SB-366791 was demonstrated to be an effective antagonist of hTRPV1 when activated by different modalities, such as capsaicin, acid or noxious heat (50 degrees C). Unlike capsazepine, SB-366791 was also an effective antagonist vs. the acid-mediated activation of rTRPV1. With the aim of defining a useful tool compound, we also profiled SB-366791 in a wide range of selectivity assays. SB-366791 had a good selectivity profile exhibiting little or no effect in a panel of 47 binding assays (containing a wide range of G-protein-coupled receptors and ion channels) and a number of electrophysiological assays including hippocampal synaptic transmission and action potential firing of locus coeruleus or dorsal raphe neurones. Furthermore, unlike capsazepine, SB-366791 had no effect on either the hyperpolarisation-activated current (I(h)) or Voltage-gated Ca(2+)-channels (VGCC) in cultured rodent sensory neurones. In summary, SB-366791 is a new TRPV1 antagonist with high potency and an improved selectivity profile with respect to other commonly used TRPV1 antagonists. SB-366791 may therefore prove to be a useful tool to further study the biology of TRPV1.
British Journal of Pharmacology | 2005
Fergal N McNamara; Andrew D. Randall; Martin J. Gunthorpe
1 We have characterised the effects of piperine, a pungent alkaloid found in black pepper, on the human vanilloid receptor TRPV1 using whole‐cell patch‐clamp electrophysiology. 2 Piperine produced a clear agonist activity at the human TRPV1 receptor yielding rapidly activating whole‐cell currents that were antagonised by the competitive TRPV1 antagonist capsazepine and the non‐competitive TRPV1 blocker ruthenium red. 3 The current–voltage relationship of piperine‐activated currents showed pronounced outward rectification (25±4‐fold between −70 and +70 mV) and a reversal potential of 0.0±0.4 mV, which was indistinguishable from that of the prototypical TRPV1 agonist capsaicin. 4 Although piperine was a less potent agonist (EC50=37.9±1.9 μM) than capsaicin (EC50=0.29±0.05 μM), it demonstrated a much greater efficacy (approximately two‐fold) at TRPV1. 5 This difference in efficacy did not appear to be related to the proton‐mediated regulation of the receptor since a similar degree of potentiation was observed for responses evoked by piperine (230±20%, n=11) or capsaicin (284±32%, n=8) upon acidification to pH 6.5. 6 The effects of piperine upon receptor desensitisation were also unable to explain this effect since piperine resulted in more pronounced macroscopic desensitisation (t1/2=9.9±0.7 s) than capsaicin (t1/2>20 s) and also caused greater tachyphylaxis in response to repetitive agonist applications. 7 Overall, our data suggest that the effects of piperine at human TRPV1 are similar to those of capsaicin except for its propensity to induce greater receptor desensitisation and, rather remarkably, exhibit a greater efficacy than capsaicin itself. These results may provide insight into the TRPV1‐mediated effects of piperine on gastrointestinal function.