Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Krauss is active.

Publication


Featured researches published by Martin Krauss.


Environmental Science & Technology | 2009

Elimination of Organic Micropollutants in a Municipal Wastewater Treatment Plant Upgraded with a Full-Scale Post-Ozonation Followed by Sand Filtration

Juliane Hollender; Saskia Gisela Zimmermann; S. Koepke; Martin Krauss; Christa S. McArdell; Christoph Ort; Heinz Singer; Urs von Gunten; Hansruedi Siegrist

The removal efficiency for 220 micropollutants was studied at the scale of a municipal wastewater treatment plant (WWTP) upgraded with post-ozonation followed by sand filtration. During post-ozonation, compounds with activated aromatic moieties, amine functions, or double bonds such as sulfamethoxazole, diclofenac, or carbamazepine with second-order rate constants for the reaction with ozone >10(4) M(-1) s(-1) at pH 7 (fast-reacting) were eliminated to concentrations below the detection limit for an ozone dose of 0.47 g O3 g(-1) dissolved organic carbon (DOC). Compounds more resistant to oxidation by ozone such as atenolol and benzotriazole were increasingly eliminated with increasing ozone doses, resulting in >85% removal for a medium ozone dose (approximately 0.6 g O3 g(-1) DOC). Only a few micropollutants such as some X-ray contrast media and triazine herbicides with second-order rate constants <10(2) M(-1) s(-1) (slowly reacting) persisted to a large extent. With a medium ozone dose, only 11 micropollutants of 55 detected in the secondary effluent were found at >100 ng L(-1). The combination of reaction kinetics and reactor hydraulics, based on laboratory-and full-scale data, enabled a quantification of the results by model calculations. This conceptual approach allows a direct upscaling from laboratory- to full-scale systems and can be applied to other similar systems. The carcinogenic by-products N-nitrosodimethylamine (NDMA) (< or =14 ng L(-1)) and bromate (<10 microg L(-1)) were produced during ozonation, however their concentrations were below or in the range of the drinking water standards. Furthermore, it could be demonstrated that biological sand filtration is an efficient additional barrier for the elimination of biodegradable compounds formed during ozonation such as NDMA. The energy requirement for the additional post-ozonation step is about 0.035 kWh m(-3), which corresponds to 12% of a typical medium-sized nutrient removal plant (5 g DOC m(-3)).


Analytical and Bioanalytical Chemistry | 2010

LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns

Martin Krauss; Heinz Singer; Juliane Hollender

AbstractThis article provides an overview of the state-of-the-art and future trends of the application of LC–high resolution mass spectrometry to the environmental analysis of polar micropollutants. Highly resolved and accurate hybrid tandem mass spectrometry such as quadrupole/time-of-flight and linear ion trap/orbitrap technology allows for a more reliable target analysis with reference standards, a screening for suspected analytes without reference standards, and a screening for unknowns. A reliable identification requires both high resolving power and high mass spectral accuracy to increase selectivity against the matrix background and for a correct molecular formula assignment to unknown compounds. For the identification and structure elucidation of unknown compounds within a reasonable time frame and with a reasonable soundness, advanced automated software solutions as well as improved prediction systems for theoretical fragmentation patterns, retention times, and ionization behavior are needed. Figurea Plot of nominal m/z vs. mass defect of all matrix ions observed in two retention time (Rt) windows of a full-scan HRMS chromatogram at a resolution of 60,000 from a background soil extract. b Extracted ion chromatograms of the herbicide linuron spiked into a background soil extract and of a suspected transformation product of lenacil in a soil extract, both showing a different mass defect


Water Research | 2011

Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: Micropollutant oxidation, by-product formation and disinfection

Saskia Gisela Zimmermann; Mathias Wittenwiler; Juliane Hollender; Martin Krauss; C. Ort; Hansruedi Siegrist; Urs von Gunten

The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O(3) g(-1) dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (k(P, O3) > 10(4) M(-1) s(-1)), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O(3) g(-1) DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (k(P, O3) < 10(4) M(-1) s(-1)) were only fully eliminated for higher ozone doses. The predictions of micropollutant oxidation based on coupling reactor hydraulics with ozone chemistry and reaction kinetics were up to a factor of 2.5 higher than full-scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference. An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O(3) g(-1) DOC was 7.5 μg L(-1), which is below the drinking water standard of 10 μg L(-1). N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L(-1) was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L(-1), with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for Escherichia coli (E. coli). Regrowth of up to 2.5 log units during sand filtration was observed for TCC while no regrowth occurred for E. coli. E. coli inactivation could not be accurately predicted by the model approach, most likely due to shielding of E. coli by flocs.


Water Research | 2009

Occurrence and removal of N-nitrosamines in wastewater treatment plants.

Martin Krauss; Philipp Longrée; Falk Dorusch; Christoph Ort; Juliane Hollender

The presence of nitrosamines in wastewater might pose a risk to water resources even in countries where chlorination or chloramination are hardly used for water disinfection. We studied the variation of concentrations and removal efficiencies of eight N-nitrosamines among 21 full-scale sewage treatment plants (STPs) in Switzerland and temporal variations at one of these plants. N-nitrosodimethylamine (NDMA) was the predominant compound in STP primary effluents with median concentrations in the range of 5-20 ng/L, but peak concentrations up to 1 microg/L. N-nitrosomorpholine (NMOR) was abundant in all plants at concentrations of 5-30 ng/L, other nitrosamines occurred at a lower number of plants at similar levels. From concentrations in urine samples and domestic wastewater we estimated that human excretion accounted for levels of <5 ng/L of NDMA and <1 ng/L of the other nitrosamines in municipal wastewater, additional domestic sources for <5 ng/L of NMOR. Levels above this domestic background are probably caused by industrial or commercial discharges, which results in highly variable concentrations in sewage. Aqueous removal efficiencies in activated sludge treatment were in general above 40% for NMOR and above 60% for the other nitrosamines, but could be lower if concentrations were below 8-15 ng/L in primary effluent. We hypothesize that substrate competition in the cometabolic degradation explains the occurrence of such threshold concentrations. An additional sand filtration step resulted in a further removal of nitrosamines from secondary effluents even at low concentrations. Concentrations released to surface waters were largely below 10 ng/L, suggesting a low impact on Swiss water resources and drinking water generation considering the generally high environmental dilution and possible degradation. However, local impacts in case a larger fraction of wastewater is present cannot be ruled out.


Environmental Pollution | 2014

Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening

Christine Hug; Nadin Ulrich; Tobias Schulze; Werner Brack; Martin Krauss

To detect site-specific, suspected and formerly unknown contaminants in a wastewater treatment plant effluent, we established a screening procedure based on liquid chromatography-high resolution mass spectrometry (LC-HRMS) with stepwise identification schemes. Based on automated substructure searches a list of 2160 suspected site-specific and documented water contaminants was reduced to those amenable to LC-HRMS. After searching chromatograms for exact masses of suspects, presumably false positive detections were stepwise excluded by retention time prediction, the evaluation of isotope patterns, ionization behavior, and HRMS/MS spectra. In nontarget analysis, peaks for identification were selected based on distinctive isotope patterns and intensity. The stepwise identification of nontarget compounds was automated by a plausibility check of molecular formulas using the Seven Golden Rules, an exclusion of compounds with presumably low commercial importance and an automated HRMS/MS evaluation. Six suspected and five nontarget chemicals were identified, of which two have not been previously reported as environmental pollutants.


Science of The Total Environment | 2015

Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

Rolf Altenburger; Selim Ait-Aissa; Philipp Antczak; Thomas Backhaus; Damià Barceló; Thomas-Benjamin Seiler; François Brion; Wibke Busch; Kevin Chipman; Miren López de Alda; Gisela de Aragão Umbuzeiro; Beate I. Escher; Francesco Falciani; Michael Faust; Andreas Focks; Klára Hilscherová; Juliane Hollender; Henner Hollert; Felix Jäger; Annika Jahnke; Andreas Kortenkamp; Martin Krauss; Gregory F. Lemkine; John Munthe; Steffen Neumann; Emma L. Schymanski; Mark D. Scrimshaw; Helmut Segner; Jaroslav Slobodnik; Foppe Smedes

Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.


Analytical Chemistry | 2008

Analysis of Nitrosamines in Wastewater: Exploring the Trace Level Quantification Capabilities of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer

Martin Krauss; Juliane Hollender

A method was developed to determine nine N-nitrosamines in wastewater on the basis of solid-phase extraction and liquid chromatography mass spectrometry using a linear ion trap-orbitrap hybrid instrument at high mass resolution. Analytes and five deuterated internal standards were preconcentrated by solid-phase extraction. Positive electrospray ionization resulted in protonated molecular ions of all nitrosamines. One to three product ions were formed by collision-induced dissociation or higher energy C-trap dissociation. The signal intensity of the product ions differed up to a factor of 3 between the two techniques. The molecular ions were usually used for quantification, because of the better sensitivity, and the product ions for confirmation. An actual mass resolving power of 25 000-40 000 ensured a sufficient selectivity to distinguish all molecular and product ions from interfering background ions. Only for N-nitrosomorpholine was a coeluting isobaric molecular ion detected in wastewater samples, which, however, formed different product ions. The mass accuracy was between -12 ppm at m/z 55 and 0 ppm at m/z 205 and did not change for more than 5 ppm over a sample sequence of 20 h analysis time. The optimized method allowed quantifying nine N-nitrosamines in drinking water and wastewater samples down to method detection limits of 0.3-3.9 ng/L at instrumental detection limits of 2-14 pg on column. Recoveries over the whole method were between 75 and 125% for six compounds, but considerably lower for three compounds, probably due to strong matrix effects causing a signal suppression of up to 95% in wastewater samples. N-Nitrosodimethylamine and N-nitrosomorpholine were the most abundant compounds (3-22 ng/L) in samples from two wastewater treatment plants, another four nitrosamines (N-nitrosopyrrolidone, -piperidine, -diethylamine, and -dibutylamine) were also detected. Our study demonstrates that the LTQ Orbitrap is a powerful instrument to quantify low molecular weight compounds at the picogram level in complex matrixes with both a high sensitivity and selectivity.


Environmental Pollution | 2003

Polychlorinated naphthalenes in urban soils: analysis, concentrations, and relation to other persistent organic pollutants.

Martin Krauss; Wolfgang Wilcke

We determined the concentrations of 35 PCNs, 12 PCBs, and 20 PAHs in 49 urban topsoils under different land use (house garden, roadside grassland, alluvial grassland, park areas, industrial sites, agricultural sites) and in nine rural topsoils. The sums of concentrations of 35 PCNs (sigma35 PCNs) were <0.1-15.4 microg kg(-1) in urban soils and <0.1 to 0.82 microg kg(-1) in rural soils. The PCN, PCB, and PAH concentrations were highest at industrial sites and in house gardens. While rural soils receive PCNs, PCBs, and PAHs by common atmospheric deposition, there are site-specific sources of PCNs, PCBs, and PAHs for urban soils such as deposition of contaminated technogenic materials. The PCN, PCB, and PAH concentrations decreased from the central urban to the rural area. In the same order the contribution of lower chlorinated PCNs and PCBs increased because they are more volatile and subject to increased atmospheric transport. The PCNs 52+60, and 73 were more abundant in soil samples than in Halowax mixtures, indicating that combustion contributed to the PCN contamination of the soils.


Science of The Total Environment | 2015

The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management

Werner Brack; Rolf Altenburger; Gerrit Schüürmann; Martin Krauss; David López Herráez; Jos van Gils; Jaroslav Slobodnik; John Munthe; Bernd Manfred Gawlik; Annemarie P. van Wezel; Merijn Schriks; Juliane Hollender; Knut Erik Tollefsen; Ovanes Mekenyan; Saby Dimitrov; Dirk Bunke; Ian T. Cousins; Leo Posthuma; Paul J. Van den Brink; Miren López de Alda; Damià Barceló; Michael Faust; Andreas Kortenkamp; Mark D. Scrimshaw; Svetlana Ignatova; Guy Engelen; Gudrun Massmann; Gregory F. Lemkine; Ivana Teodorovic; Karl Heinz Walz

SOLUTIONS (2013 to 2018) is a European Union Seventh Framework Programme Project (EU-FP7). The project aims to deliver a conceptual framework to support the evidence-based development of environmental policies with regard to water quality. SOLUTIONS will develop the tools for the identification, prioritisation and assessment of those water contaminants that may pose a risk to ecosystems and human health. To this end, a new generation of chemical and effect-based monitoring tools is developed and integrated with a full set of exposure, effect and risk assessment models. SOLUTIONS attempts to address legacy, present and future contamination by integrating monitoring and modelling based approaches with scenarios on future developments in society, economy and technology and thus in contamination. The project follows a solutions-oriented approach by addressing major problems of water and chemicals management and by assessing abatement options. SOLUTIONS takes advantage of the access to the infrastructure necessary to investigate the large basins of the Danube and Rhine as well as relevant Mediterranean basins as case studies, and puts major efforts on stakeholder dialogue and support. Particularly, the EU Water Framework Directive (WFD) Common Implementation Strategy (CIS) working groups, International River Commissions, and water works associations are directly supported with consistent guidance for the early detection, identification, prioritisation, and abatement of chemicals in the water cycle. SOLUTIONS will give a specific emphasis on concepts and tools for the impact and risk assessment of complex mixtures of emerging pollutants, their metabolites and transformation products. Analytical and effect-based screening tools will be applied together with ecological assessment tools for the identification of toxicants and their impacts. The SOLUTIONS approach is expected to provide transparent and evidence-based candidates or River Basin Specific Pollutants in the case study basins and to assist future review of priority pollutants under the WFD as well as potential abatement options.


Science of The Total Environment | 2016

Effect-directed analysis supporting monitoring of aquatic environments — An in-depth overview

Werner Brack; Selim Ait-Aissa; Robert M. Burgess; Wibke Busch; Nicolas Creusot; Carolina Di Paolo; Beate I. Escher; L. Mark Hewitt; Klára Hilscherová; Juliane Hollender; Henner Hollert; Willem Jonker; Jeroen Kool; M.H. Lamoree; Matthias Muschket; Steffen Neumann; Pawel Rostkowski; Christoph Ruttkies; Jennifer E. Schollée; Emma L. Schymanski; Tobias Schulze; Thomas-Benjamin Seiler; Andrew J. Tindall; Gisela de Aragão Umbuzeiro; Branislav Vrana; Martin Krauss

Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments.

Collaboration


Dive into the Martin Krauss's collaboration.

Top Co-Authors

Avatar

Werner Brack

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Juliane Hollender

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tobias Schulze

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Wilcke

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hansruedi Siegrist

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

S. Koepke

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Saskia Gisela Zimmermann

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wibke Busch

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Emma L. Schymanski

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge