Martin Kreitman
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Kreitman.
Nature | 2000
Michael Ludwig; Casey M. Bergman; Nipam H. Patel; Martin Kreitman
Eukaryotic gene expression is mediated by compact cis-regulatory modules, or enhancers, which are bound by specific sets of transcription factors. The combinatorial interaction of these bound transcription factors determines time- and tissue-specific gene activation or repression. The even-skipped stripe 2 element controls the expression of the second transverse stripe of even-skipped messenger RNA in Drosophila melanogaster embryos, and is one of the best characterized eukaryotic enhancers. Although even-skipped stripe 2 expression is strongly conserved in Drosophila, the stripe 2 element itself has undergone considerable evolutionary change in its binding-site sequences and the spacing between them. We have investigated this apparent contradiction, and here we show that two chimaeric enhancers, constructed by swapping the 5′ and 3′ halves of the native stripe 2 elements of two species, no longer drive expression of a reporter gene in the wild-type pattern. Sequence differences between species have functional consequences, therefore, but they are masked by other co-evolved differences. On the basis of these results, we present a model for the evolution of eukaryotic regulatory sequences.
Nature | 2003
Dacheng Tian; M. B. Traw; Jun-Yuan Chen; Martin Kreitman; Joy Bergelson
Resistance genes (R-genes) act as an immune system in plants by recognizing pathogens and inducing defensive pathways. Many R-gene loci are present in plant genomes, presumably reflecting the need to maintain a large repertoire of resistance alleles. These loci also often segregate for resistance and susceptibility alleles that natural selection has maintained as polymorphisms within a species for millions of years. Given the obvious advantage to an individual of being disease resistant, what prevents these resistance alleles from being driven to fixation by natural selection? A cost of resistance is one potential explanation; most models require a lower fitness of resistant individuals in the absence of pathogens for long-term persistence of susceptibility alleles. Here we test for the presence of a cost of resistance at the RPM1 locus of Arabidopsis thaliana. Results of a field experiment comparing the fitness of isogenic strains that differ in the presence or absence of RPM1 and its natural promoter reveal a large cost of RPM1, providing the first evidence that costs contribute to the maintenance of an ancient R-gene polymorphism.
Nature | 1999
Eli A. Stahl; Greg Dwyer; Rodney Mauricio; Martin Kreitman; Joy Bergelson
The co-evolutionary ‘arms race’ is a widely accepted model for the evolution of host–pathogen interactions. This model predicts that variation for disease resistance will be transient, and that host populations generally will be monomorphic at disease-resistance (R -gene) loci. However, plant populations show considerable polymorphism at R -gene loci involved in pathogen recognition. Here we have tested the arms-race model in Arabidopsis thaliana by analysing sequences flanking Rpm1, a gene conferring the ability to recognize Pseudomonas pathogens carrying AvrRpm1 orAvrB (ref. 3). We reject the arms-race hypothesis: resistance andsusceptibility alleles at this locus have co-existed for millions of years. To account for the age of alleles and the relative levels ofpolymorphism within allelic classes, we use coalescence theory to model the long-term accumulation of nucleotide polymorphism in the context of the short-term ecological dynamics of disease resistance. This analysis supports a ‘trench warfare’ hypothesis, inwhich advances and retreats of resistance-allele frequency maintain variation for disease resistance as a dynamic polymorphism,.
Nature Genetics | 2002
Magnus Nordborg; Justin O. Borevitz; Joy Bergelson; Charles C. Berry; Joanne Chory; Jenny Hagenblad; Martin Kreitman; Julin N. Maloof; Tina Noyes; Peter J. Oefner; Eli A. Stahl; Detlef Weigel
Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci. The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped. Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing. Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination. Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana.
The Plant Cell | 2006
Erica G. Bakker; Christopher Toomajian; Martin Kreitman; Joy Bergelson
We used polymorphism analysis to study the evolutionary dynamics of 27 disease resistance (R) genes by resequencing the leucine-rich repeat (LRR) region in 96 Arabidopsis thaliana accessions. We compared single nucleotide polymorphisms (SNPs) in these R genes to an empirical distribution of SNP in the same sample based on 876 fragments selected to sample the entire genome. LRR regions are highly polymorphic for protein variants but not for synonymous changes, suggesting that they generate many alleles maintained for short time periods. Recombination is also relatively common and important for generating protein variants. Although none of the genes is nearly as polymorphic as RPP13, a locus previously shown to have strong signatures of balancing selection, seven genes show weaker indications of balancing selection. Five R genes are relatively invariant, indicating young alleles, but all contain segregating protein variants. Polymorphism analysis in neighboring fragments yielded inconclusive evidence for recent selective sweeps at these loci. In addition, few alleles are candidates for rapid increases in frequency expected under directional selection. Haplotype sharing analysis revealed significant underrepresentation of R gene alleles with extended haplotypes compared with 1102 random genomic fragments. Lack of convincing evidence for directional selection or selective sweeps argues against an arms race driving R gene evolution. Instead, the data support transient or frequency-dependent selection maintaining protein variants at a locus for variable time periods.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Dacheng Tian; Hitoshi Araki; Eli A. Stahl; Joy Bergelson; Martin Kreitman
Natural selection and genetic linkage cause DNA segments to have genealogical histories resembling those of the selected sites. When a polymorphism maintained by selection is old, it will have an island of enhanced sequence variability surrounding it, which represents a detectable “signature of selection.” We investigate the structure of single-nucleotide polymorphisms (SNPs) in a 20-kb interval containing the Arabidopsis thaliana disease resistance gene RPS5, a locus containing common alleles for the presence/absence of the entire locus. The alleles are considerably diverged at surrounding sites, indicative of an old polymorphism maintained by selection. The island of “enhanced” variability extends several kilobases to either side of the RPS5 deletion junction, and these SNPs are in nearly complete linkage disequilibrium with the RPS5 insertion/deletion. At a distance of 10 kb to either side of the locus, however, we find low levels of polymorphism and the absence of linkage disequilibrium between individual SNPs and RPS5 alleles. Our results show that the interval of enhanced variability surrounding this balanced polymorphism in Arabidopsis is large enough to be readily detected, but small enough to span the focal gene and few others. For this species it should be possible to identify the complete set of genes with long-lived polymorphisms, a potentially important subset of genes segregating for functional variants.
Trends in Ecology and Evolution | 1995
J. William O. Ballard; Martin Kreitman
Variation and change in mitochondrial DNA (mtDNA) is often assumed to conform to a constant mutation rate equilibrium neutral model of molecular evolution. Recent evidence, however, indicates that the assumptions underlying this model are frequently violated. The mitochondria) genome may be subject to the same suite of forces known to be acting in the nuclear genome, including hitchhiking and selection, as well as forces that do not affect nuclear variation. Wherever possible, evolutionary studies involving mtDNA should incorporate statistical tests to investigate the forces shaping sequence variation and evolution.
PLOS Biology | 2005
Michael Ludwig; Arnar Palsson; Elena Alekseeva; Casey M. Bergman; Janaki Nathan; Martin Kreitman
Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules.
Nature | 2008
Dacheng Tian; Qiang Wang; Pengfei Zhang; Hitoshi Araki; Sihai Yang; Martin Kreitman; Thomas Nagylaki; Richard R. Hudson; Joy Bergelson; Jian-Qun Chen
Mutation hotspots are commonly observed in genomic sequences and certain human disease loci, but general mechanisms for their formation remain elusive. Here we investigate the distribution of single-nucleotide changes around insertions/deletions (indels) in six independent genome comparisons, including primates, rodents, fruitfly, rice and yeast. In each of these genomic comparisons, nucleotide divergence (D) is substantially elevated surrounding indels and decreases monotonically to near-background levels over several hundred bases. D is significantly correlated with both size and abundance of nearby indels. In comparisons of closely related species, derived nucleotide substitutions surrounding indels occur in significantly greater numbers in the lineage containing the indel than in the one containing the ancestral (non-indel) allele; the same holds within species for single-nucleotide mutations surrounding polymorphic indels. We propose that heterozygosity for an indel is mutagenic to surrounding sequences, and use yeast genome-wide polymorphism data to estimate the increase in mutation rate. The consistency of these patterns within and between species suggests that indel-associated substitution is a general mutational mechanism.
Angewandte Chemie | 2012
Jennifer M. Finefield; David H. Sherman; Martin Kreitman; Robert M. Williams
In nature, chiral natural products are usually produced in optically pure form-however, occasionally both enantiomers are formed. These enantiomeric natural products can arise from a single species or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers; however, many fascinating puzzles and stereochemical anomalies still remain.