Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin L. Scott is active.

Publication


Featured researches published by Martin L. Scott.


Proceedings of the National Academy of Sciences of the United States of America | 1993

Production of high-titer helper-free retroviruses by transient transfection

Garry P. Nolan; Martin L. Scott; David Baltimore

Retroviral gene transfer is presently one of the most powerful techniques for introducing stably heritable genetic material into mammalian cells (reviewed in ref. 1). One serious drawback of this technique, however, has been the difficulty in readily producing high-titer recombinant retroviruses. For many applications, such as infecting rare target cells or the majority of cells in tissue culture, the recombinant virus titer must be at least 10(6) infectious units/mL. Although one can usually obtain high-titer mixtures of recombinant and replication-competent retroviruses in a relatively short time, many applications such as cell marking studies or studying genes in vivo demand freedom from replication-competent virus.


Nature Genetics | 2003

A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference.

Douglas A. Rubinson; Christopher P. Dillon; Adam V. Kwiatkowski; Claudia Sievers; Lili Yang; Johnny Kopinja; Dina L Rooney; Mingdi Zhang; Melanie Ihrig; Michael T. McManus; Frank B. Gertler; Martin L. Scott; Luk Van Parijs

RNA interference (RNAi) has recently emerged as a specific and efficient method to silence gene expression in mammalian cells either by transfection of short interfering RNAs (siRNAs; ref. 1) or, more recently, by transcription of short hairpin RNAs (shRNAs) from expression vectors and retroviruses. But the resistance of important cell types to transduction by these approaches, both in vitro and in vivo, has limited the use of RNAi. Here we describe a lentiviral system for delivery of shRNAs into cycling and non-cycling mammalian cells, stem cells, zygotes and their differentiated progeny. We show that lentivirus-delivered shRNAs are capable of specific, highly stable and functional silencing of gene expression in a variety of cell types and also in transgenic mice. Our lentiviral vectors should permit rapid and efficient analysis of gene function in primary human and animal cells and tissues and generation of animals that show reduced expression of specific genes. They may also provide new approaches for gene therapy.


Nature Neuroscience | 2005

LINGO-1 negatively regulates myelination by oligodendrocytes

Sha Mi; Robert H. Miller; Xinhua Lee; Martin L. Scott; Svetlane Shulag-Morskaya; Zhaohui Shao; Jufang Chang; Greg Thill; Melissa Levesque; Mingdi Zhang; Cathy Hession; Dinah W. Y. Sah; Bruce D. Trapp; Zhigang He; Vincent Jung; R. Blake Pepinsky

The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.


Cell | 2000

Chromosome Missegregation and Apoptosis in Mice Lacking the Mitotic Checkpoint Protein Mad2

Max Dobles; Vasco Liberal; Martin L. Scott; Robert Benezra; Peter K. Sorger

The initiation of chromosome segregation at anaphase is linked by the spindle assembly checkpoint to the completion of chromosome-microtubule attachment during metaphase. To determine the function of the mitotic checkpoint protein Mad2 during normal cell division and when mitosis goes awry, we have knocked out Mad2 in mice. We find that E5.5 embryonic cells lacking Mad2, like mad2 yeast, grow normally but are unable to arrest in response to spindle disruption. At E6.5, the cells of the epiblast begin rapid cell division and the absence of a checkpoint results in widespread chromosome missegregation and apoptosis. In contrast, the postmitotic trophoblast giant cells survive without Mad2. Thus, the spindle assembly checkpoint is required for accurate chromosome segregation in mitotic mouse cells, and for embryonic viability, even in the absence of spindle damage.


Journal of Immunology | 2004

B Cell-Activating Factor Belonging to the TNF Family (BAFF)-R Is the Principal BAFF Receptor Facilitating BAFF Costimulation of Circulating T and B Cells

Lai Guan Ng; Andrew P. R. Sutherland; Rebecca Newton; Fang Qian; Teresa G. Cachero; Martin L. Scott; Jeffrey Thompson; Julie Wheway; Tatyana Chtanova; Joanna Groom; Ian Sutton; Cynthia Xin; Stuart G. Tangye; Susan L. Kalled; Fabienne Mackay; Charles R. Mackay

BAFF (B cell-activating factor belonging to the TNF family) is a cell survival and maturation factor for B cells, and overproduction of BAFF is associated with systemic autoimmune disease. BAFF binds to three receptors, BAFF-R, transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B cell maturation Ag (BCMA). Using specific mAbs, BAFF-R was found to be the predominant BAFF receptor expressed on peripheral B cells, in both humans and mice, and antagonist mAbs to BAFF-R blocked BAFF-mediated costimulation of anti-μ responses. The other BAFF receptors showed a much more restricted expression pattern, suggestive of specialized roles. BCMA was expressed by germinal center B cells, while TACI was expressed predominantly by splenic transitional type 2 and marginal zone B cells, as well as activated B cells, but was notably absent from germinal center B cells. BAFF was also an effective costimulator for T cells, and this costimulation occurs entirely through BAFF-R. BAFF-R, but not TACI or BCMA, was expressed on activated/memory subsets of T cells, and T cells from BAFF-R mutant A/WySnJ mice failed to respond to BAFF costimulation. Thus, BAFF-R is important not only for splenic B cell maturation, but is the major mediator of BAFF-dependent costimulatory responses in peripheral B and T cells.


Neuron | 1998

Essential Roles for the Abl and Arg Tyrosine Kinases in Neurulation

Anthony J. Koleske; Ann M. Gifford; Martin L. Scott; Michelle Nee; Roderick T. Bronson; Klaus A. Miczek; David Baltimore

The Abl and Arg tyrosine kinases play fundamental roles in the development and function of the central nervous system. Arg is most abundant in adult mouse brain, especially in synapse-rich regions. arg(-/-) mice develop normally but exhibit multiple behavioral abnormalities, suggesting that arg(-/-) brains suffer from defects in neuronal function. Embryos deficient in both Abl and Arg suffer from defects in neurulation and die before 11 days postcoitum (dpc). Although they divide normally, abl(-/-)arg(-/-) neuroepithelial cells display gross alterations in their actin cytoskeleton. We find that Abl and Arg colocalize with each other and with actin microfilaments at the apical surface of the developing neuroepithelium. Thus, Abl and Arg play essential roles in neurulation and can regulate the structure of the actin cytoskeleton.


Neuron | 2005

TAJ/TROY, an Orphan TNF Receptor Family Member, Binds Nogo-66 Receptor 1 and Regulates Axonal Regeneration

Zhaohui Shao; Jeffrey L. Browning; Xinhua Lee; Martin L. Scott; Sveltlana Shulga-Morskaya; Norm Allaire; Greg Thill; Melissa Levesque; Dinah W. Y. Sah; Beth Murray; Vincent Jung; R. Blake Pepinsky; Sha Mi

Myelin-associated inhibitory factors (MAIFs) are inhibitors of CNS axonal regeneration following injury. The Nogo receptor complex, composed of the Nogo-66 receptor 1 (NgR1), neurotrophin p75 receptor (p75), and LINGO-1, represses axon regeneration upon binding to these myelin components. The limited expression of p75 to certain types of neurons and its temporal expression during development prompted speculation that other receptors are involved in the NgR1 complex. Here, we show that an orphan receptor in the TNF family called TAJ, broadly expressed in postnatal and adult neurons, binds to NgR1 and can replace p75 in the p75/NgR1/LINGO-1 complex to activate RhoA in the presence of myelin inhibitors. In vitro exogenously added TAJ reversed neurite outgrowth caused by MAIFs. Neurons from Taj-deficient mice were more resistant to the suppressive action of the myelin inhibitors. Given the limited expression of p75, the discovery of TAJ function is an important step for understanding the regulation of axonal regeneration.


Molecular and Cellular Biology | 1994

Sequential induction of NF-kappa B/Rel family proteins during B-cell terminal differentiation.

Hsiou-Chi Liou; William C. Sha; Martin L. Scott; David Baltimore

The NF-kappa B/Rel family of at least five transcription factor polypeptides is thought to function both as a developmental regulator in B cells and as a rapid response system in all cells. To examine this notion in more detail, we determined the protein contents of both the inducible and constitutive NF-kappa B/Rel activities in a pre-B-cell line, 70Z/3, and a mature B-cell line, WEHI 231. NF-kappa B p50/p65 is the major inducible nuclear complex after lipopolysaccharide or phorbol myristate acetate treatment of 70Z/3 cells. The constitutive and inducible complexes in WEHI 231 cells are mainly composed of p50 and Rel. The constitutive or induced activities are all sensitive to I kappa B-alpha, but this inhibitor is very short-lived in WEHI 231 cells, suggesting that the balance between synthesis and degradation of I kappa B-alpha determines whether a particular cell lineage has constitutive activity. A patterned expression of the NF-kappa B/Rel activator proteins emerges from an analysis of other B-lineage cell lines and splenic B cells: mainly p50 and p65 in pre-B (and non-B) cells, a predominance of Rel and p50 in mature B cells, and expression of p52 and RelB in plasmacytoma lines. This ordered pattern of regulators may reflect the requirement for expression of different genes during terminal B-cell differentiation because different combinations of NF-kappa B/Rel family members preferentially activate distinct kappa B sites in reporter constructs.


Journal of Immunology | 2001

Targeted Mutation of TNF Receptor I Rescues the RelA-Deficient Mouse and Reveals a Critical Role for NF-κB in Leukocyte Recruitment

Elizabeth Alcamo; Joseph P. Mizgerd; Bruce H. Horwitz; Rod Bronson; Amer A. Beg; Martin L. Scott; Claire M. Doerschuk; Richard O. Hynes; David Baltimore

NF-κB binding sites are present in the promoter regions of many acute phase and inflammatory response genes, suggesting that NF-κB plays an important role in the initiation of innate immune responses. However, targeted mutations of the various NF-κB family members have yet to identify members responsible for this critical role. RelA-deficient mice die on embryonic day 15 from TNF-α-induced liver degeneration. To investigate the importance of RelA in innate immunity, we genetically suppressed this embryonic lethality by breeding the RelA deficiency onto a TNFR type 1 (TNFR1)-deficient background. TNFR1/RelA-deficient mice were born healthy, but were susceptible to bacterial infections and bacteremia and died within a few weeks after birth. Hemopoiesis was intact in TNFR1/RelA-deficient newborns, but neutrophil emigration to alveoli during LPS-induced pneumonia was severely reduced relative to that in wild-type or TNFR1-deficient mice. In contrast, radiation chimeras reconstituted with RelA or TNFR1/RelA-deficient hemopoietic cells were healthy and demonstrated no defect in neutrophil emigration during LPS-induced pneumonia. Analysis of RNA harvested from the lungs of mice 4 h after LPS insufflation revealed that the induction of several genes important for neutrophil recruitment to the lung was significantly reduced in TNFR1/RelA-deficient mice relative to that in wild-type or TNFR1-deficient mice. These results suggest that TNFR1-independent activation of RelA is essential in cells of nonhemopoietic origin during the initiation of an innate immune response.


Journal of Experimental Medicine | 2003

Normal B Cell Homeostasis Requires B Cell Activation Factor Production by Radiation-resistant Cells

Leonid Gorelik; Kevin Gilbride; Max Dobles; Susan L. Kalled; Daniel Zandman; Martin L. Scott

The cellular source of B cell activation factor (BAFF) required for peripheral B cell survival/maturation is unknown. To determine the nature of BAFF-producing cells we established and analyzed reciprocal bone marrow (BM) chimeras with wild-type (WT) and BAFF-deficient mice. The results revealed that BAFF production by radiation-resistant stromal cells is completely sufficient to provide a necessary signal for B cell survival/maturation, as BAFF−/− BM cells transferred into lethally irradiated WT mice gave rise to normal numbers of follicular (FO) and marginal zone (MZ) B cell subpopulations. On the other hand, transfer of WT BM into BAFF−/−lethally irradiated mice resulted only in minimal reconstitution of mature FO B cells and no restoration of MZ B cells. Thus, in the absence of BAFF+/+stromal cells, BAFF production by BM-derived cells, presumably by macrophages, dendritic cells, and/or neutrophils, was not at all sufficient to support normal B cell homeostasis. Interestingly, immunization of both types of chimeras stimulated high levels of antigen-specific antibody secretion, indicating that either stromal cell– or hematopoietic cell–derived BAFF is sufficient for B cell antibody responses.

Collaboration


Dive into the Martin L. Scott's collaboration.

Top Co-Authors

Avatar

David Baltimore

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bruce H. Horwitz

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Max Dobles

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge