Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Lohr is active.

Publication


Featured researches published by Martin Lohr.


Nature | 2010

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.


Molecular Biology and Evolution | 2008

Ancient Recruitment by Chromists of Green Algal Genes Encoding Enzymes for Carotenoid Biosynthesis

Ruth Frommolt; Sonja Werner; Harald Paulsen; Reimund Goss; Christian Wilhelm; Stefan Zauner; Uwe G. Maier; Arthur R. Grossman; Debashish Bhattacharya; Martin Lohr

Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-encoded chromist proteins should be most closely related to their red algal homologs. Here we analyzed the biosynthetic pathway of carotenoids that are essential components of all photosynthetic eukaryotes and find a mosaic evolutionary origin of these enzymes in chromists. Surprisingly, about one-third (5/16) of the proteins are most closely related to green algal homologs with three branching within or sister to the early-diverging Prasinophyceae. This phylogenetic association is corroborated by shared diagnostic indels and the syntenic arrangement of a specific gene pair involved in the photoprotective xanthophyll cycle. The combined data suggest that the prasinophyte genes may have been acquired before the ancient split of stramenopiles, haptophytes, cryptophytes, and putatively also dinoflagellates. The latter point is supported by the observed monophyly of alveolates and stramenopiles in most molecular trees. One possible explanation for our results is that the green genes are remnants of a cryptic endosymbiosis that occurred early in chromalveolate evolution; that is, prior to the postulated split of stramenopiles, alveolates, haptophytes, and cryptophytes. The subsequent red algal capture would have led to the loss or replacement of most green genes via intracellular gene transfer from the new endosymbiont. We argue that the prasinophyte genes were retained because they enhance photosynthetic performance in chromalveolates, thus extending the niches available to these organisms. The alternate explanation of green gene origin via serial endosymbiotic or horizontal gene transfers is also plausible, but the latter would require the independent origins of the same five genes in some or all the different chromalveolate lineages.


Plant Physiology | 2005

Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii

Martin Lohr; Chung-Soon Im; Arthur R. Grossman

The unicellular green alga Chlamydomonas reinhardtii is a particularly important model organism for the study of photosynthesis since this alga can grow heterotrophically, and mutants in photosynthesis are therefore conditional rather than lethal. The recently developed tools for genomic analyses of this organism have allowed us to identify most of the genes required for chlorophyll and carotenoid biosynthesis and to examine their phylogenetic relationships with homologous genes from vascular plants, other algae, and cyanobacteria. Comparative genome analyses revealed some intriguing features associated with pigment biosynthesis in C. reinhardtii; in some cases, there are additional conserved domains in the algal and plant but not the cyanobacterial proteins that may directly influence their activity, assembly, or regulation. For some steps in the chlorophyll biosynthetic pathway, we found multiple gene copies encoding putative isozymes. Phylogenetic studies, theoretical evaluation of gene expression through analysis of expressed sequence tag data and codon bias of each gene, enabled us to generate hypotheses concerning the function and regulation of the individual genes, and to propose targets for future research. We have also used quantitative polymerase chain reaction to examine the effect of low fluence light on the level of mRNA accumulation encoding key proteins of the biosynthetic pathways and examined differential expression of those genes encoding isozymes that function in the pathways. This work is directing us toward the exploration of the role of specific photoreceptors in the biosynthesis of pigments and the coordination of pigment biosynthesis with the synthesis of proteins of the photosynthetic apparatus.


Planta | 2001

Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model

Martin Lohr; Christian Wilhelm

Abstract. Recently, we reported the presence of the violaxanthin-antheraxanthin-zeaxanthin cycle in diatoms, and showed that violaxanthin is the putative precursor of both diadinoxanthin and fucoxanthin in the diatom Phaeodactylum tricornutum Bohlin (M. Lohr and C. Wilhelm, 1999, Proc. Natl. Acad. Sci. USA 96: 8784–8789). In the present study, two possible intermediates in the synthesis of violaxanthin from β-carotene were identified in P. tricornutum, namely β-cryptoxanthin and β-cryptoxanthin epoxide. In low light, the latter pigment prevails, but in high light β-cryptoxanthin accumulates, probably as the result of an increased activity of the xantophyll-cycle de-epoxidase. The apparent kinetics of several xanthophyll conversion steps were determined for P. tricornutum and Cyclotella meneghiniana Kützing. The experimentally determined conversion rates were used to evaluate the hypothetical pathway of xanthophyll synthesis in diatoms. For this purpose a mathematical model was developed which allows the calculation of theoretical rates of pigment conversion for microalgae under steady-state growth conditions. A comparison between measured and calculated conversion rates agreed well with the proposal of a sequential synthesis of fucoxanthin via violaxanthin and diadinoxanthin. The postulation of zeaxanthin as an obligatory intermediate in the synthesis of violaxanthin, however, resulted in large discrepancies between the measured and calculated rates of its epoxidation. Instead of zeaxanthin, β-cryptoxanthin epoxide may be involved in the biosynthesis of violaxanthin in diatoms.


Plant Science | 2012

Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

Martin Lohr; Jörg Schwender; Jürgen E.W. Polle

Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.


Fems Microbiology Reviews | 2012

Microalgae in the postgenomic era: a blooming reservoir for new natural products

Severin Sasso; Georg Pohnert; Martin Lohr; Maria Mittag; Christian Hertweck

Bacteria, fungi, algae and higher plants are the most prolific producers of natural products (secondary metabolites). Compared to macroalgae, considerably fewer natural products have been isolated from microalgae, which offer the possibility of obtaining sufficient and well-defined biological material from laboratory cultures. Interest in microalgae is reinforced by large-scale data sets from genome sequencing projects and the development of genetic tools such as transformation protocols. This review highlights what is currently known about the biosynthesis and biological role of natural products in microalgae, with examples from isoprenoids, complex polyketides, nonribosomal peptides, polyunsaturated fatty acids and oxylipins, alkaloids, and aromatic secondary metabolites. In addition, we introduce a bioinformatic analysis of available genome sequences from totally 16 microalgae, belonging to the green and red algae, heterokonts and haptophytes. The results suggest that the biosynthetic potential of microalgae is underestimated and many microalgal natural products remain to be discovered.


Photosynthesis Research | 2004

Genomic analysis of mutants affecting xanthophyll biosynthesis and regulation of photosynthetic light harvesting in Chlamydomonas reinhardtii

M. Anwaruzzaman; Brian L. Chin; Xiao-Ping Li; Martin Lohr; Diego Martinez; Krishna K. Niyogi

When the absorption of light energy exceeds the capacity for its utilization in photosynthesis, regulation of light harvesting is critical in order for photosynthetic organisms to minimize photo-oxidative damage. Thermal dissipation of excess absorbed light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is induced rapidly in response to excess light conditions, and it is known that xanthophylls such as zeaxanthin and lutein, the transthylakoid pH gradient, and the PsbS protein are involved in this mechanism. Although mutants affecting NPQ and the biosynthesis of zeaxanthin and lutein were originally isolated and characterized at the physiological level in the unicellular green alga Chlamydomonas reinhardtii, the molecular basis of several of these mutants, such as npq1 and lor1, has not been determined previously. The recent sequencing of the C. reinhardtii nuclear genome has facilitated the search for C. reinhardtii homologs of plant genes involved in xanthophyll biosynthesis and regulation of light harvesting. Here we report the identification of C. reinhardtii genes encoding PsbS and lycopene ɛ-cyclase, and we show that the lor1 mutation, which affects lutein synthesis, is located within the lycopene ɛ-cyclase gene. In contrast, no homolog of the plant violaxanthin de-epoxidase (VDE) gene was found. Molecular markers were used to map the npq1 mutation, which affects VDE activity, as a first step toward the map-based cloning of the NPQ1 gene.


Journal of Phycology | 2012

Porphyra (Bangiophyceae) Transcriptomes Provide Insights Into Red Algal Development And Metabolism

Cheong Xin Chan; Nicolas A. Blouin; Yunyun Zhuang; Simone Zäuner; Simon Prochnik; Erika Lindquist; Senjie Lin; Christoph Benning; Martin Lohr; Charles Yarish; Elisabeth Gantt; Arthur R. Grossman; Shan Lu; Kirsten M. Müller; John W. Stiller; Susan H. Brawley; Debashish Bhattacharya

The red seaweed Porphyra (Bangiophyceae) and related Bangiales have global economic importance. Here, we report the analysis of a comprehensive transcriptome comprising ca. 4.7 million expressed sequence tag (EST) reads from P. umbilicalis (L.) J. Agardh and P. purpurea (Roth) C. Agardh (ca. 980 Mbp of data generated using 454 FLX pyrosequencing). These ESTs were isolated from the haploid gametophyte (blades from both species) and diploid conchocelis stage (from P. purpurea). In a bioinformatic analysis, only 20% of the contigs were found to encode proteins of known biological function. Comparative analysis of predicted protein functions in mesophilic (including Porphyra) and extremophilic red algae suggest that the former has more putative functions related to signaling, membrane transport processes, and establishment of protein complexes. These enhanced functions may reflect general mesophilic adaptations. A near‐complete repertoire of genes encoding histones and ribosomal proteins was identified, with some differentially regulated between the blade and conchocelis stage in P. purpurea. This finding may reflect specific regulatory processes associated with these distinct phases of the life history. Fatty acid desaturation patterns, in combination with gene expression profiles, demonstrate differences from seed plants with respect to the transport of fatty acid/lipid among subcellular compartments and the molecular machinery of lipid assembly. We also recovered a near‐complete gene repertoire for enzymes involved in the formation of sterols and carotenoids, including candidate genes for the biosynthesis of lutein. Our findings provide key insights into the evolution, development, and biology of Porphyra, an important lineage of red algae.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)

Susan H. Brawley; Nicolas A. Blouin; Elizabeth Ficko-Blean; Glen L. Wheeler; Martin Lohr; Holly V. Goodson; Jerry Jenkins; Crysten E. Blaby-Haas; Katherine E. Helliwell; Cheong Xin Chan; Tara N. Marriage; Debashish Bhattacharya; Anita S. Klein; Yacine Badis; Juliet Brodie; Yuanyu Cao; Jonas Collén; Simon M. Dittami; Claire M. M. Gachon; Beverley R. Green; Steven J. Karpowicz; Jay W. Kim; Ulrich Johan Kudahl; Senjie Lin; Gurvan Michel; Maria Mittag; Bradley J. S. C. Olson; Jasmyn Pangilinan; Yi Peng; Huan Qiu

Significance Fossil evidence shows that red algae (Rhodophyta) are one of the most ancient multicellular lineages. Their ecological, evolutionary, and commercial importance notwithstanding, few red algal nuclear genomes have been sequenced. Our analyses of the Porphyra umbilicalis genome provide insights into how this macrophyte thrives in the stressful intertidal zone and into the basis for its nutritional value as human food. Many of the novel traits (e.g., cytoskeletal organization, calcium signaling pathways) we find encoded in the Porphyra genome are extended to other red algal genomes, and our unexpected findings offer a potential explanation for why the red algae are constrained to small stature relative to other multicellular lineages. Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.


Biochimica et Biophysica Acta | 2008

The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase

Astrid Vieler; Holger A. Scheidt; Peter Schmidt; Cindy Montag; Janine F. Nowoisky; Martin Lohr; Christian Wilhelm; Daniel Huster; Reimund Goss

In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.

Collaboration


Dive into the Martin Lohr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur R. Grossman

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bank Beszteri

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Astrid Vieler

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Carl J. Carrano

San Diego State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge