Martin Ovsik
Tomas Bata University in Zlín
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Ovsik.
Key Engineering Materials | 2015
Ales Mizera; Miroslav Manas; David Manas; Martin Ovsik; Martina Hribova; Michal Stanek; Jan Navratil; Martin Bednarik
The presented article deals with the research of surface layer ́s micro-mechanical properties of modified LDPE by radiation cross-linking after temperature load. These micro-mechanical properties were measured by the DSI (Depth Sensing Indentation) method on samples which were non-irradiated and irradiated by different doses of the β – radiation and then were temperature loaded. The purpose of the article is to consider to what extent the irradiation process influences the resulting micro-mechanical properties measured by the DSI method. The LDPE tested showed significant changes of indentation hardness and modulus after temperature load.
Key Engineering Materials | 2015
David Manas; Miroslav Manas; Ales Mizera; Michal Stanek; Martin Bednarik; Martin Ovsik; Pavel Stoklasek
The presented article deals with the research of micro-mechanical properties in the surface layer of modified Polypropylene filled by 25% of glass fibers. These micro-mechanical properties were measured by the Depth Sensing Indentation - DSI method on samples which were non-irradiated and irradiated by different doses of the β - radiation. Radiation doses used were 0, 66 and 99 kGy for filled Polypropylene with the 6% cross-linking agent (triallyl isocyanurate). The change of micromechanical properties is greatly manifested mainly in the surface layer of the modified polypropylene where a significant growth of microhardness values can be observed.
Key Engineering Materials | 2014
Martin Ovsik; Petr Kratky; David Manas; Miroslav Manas; Michal Stanek; Martin Bednarik
This article deals with the influence of different doses of Beta radiation to the structure and mico-mechanical properties of Low-density polyethylene (LDPE). Hard surface layers of polymer materials, especially LDPE, can be formed by radiation cross-linking by β radiation with doses of 33, 66 and 99 kGy. Material properties created by β radiation are measured by micro-hardness test using the DSI method (Depth Sensing Indentation). Individual radiation doses caused structural and micro-mechanical changes which have a significant effect on the final properties of the LDPE tested. The highest values of micro-mechanical properties were reached at radiation dose of 66 and 99 kGy, when the micro-hardness values increased by about 21%. The changes were examined and confirmed by X-ray diffraction.
Polymers | 2018
David Manas; Ales Mizera; Miroslav Manas; Martin Ovsik; Lenka Hylova; Stanislav Sehnalek; Pavel Stoklasek
Some polymers need a cross-linking agent for the controlled cross-linking process of polymers with a tendency to degradation during the radiation cross-linking process. While, on the other hand, other polymers do not need a cross-linking agent—predominantly there are cross-linking polymers. The Thermo-Plastic Elastomer (TPE) that was used belongs to this group of predominantly cross-linking polymers; however, this agent is added because of faster reaction times and smaller irradiation doses. Microindentation–tensile and tensile impact tests were carried out on a thermoplastic sample—with, and without, a cross-linking agent. Small changes were measured between these materials at low radiation doses, (up to 66 kGy); nevertheless, at higher doses, the influence of the cross-linking agent on the mechanical properties is significant.
Polymers | 2018
David Manas; Martin Ovsik; Ales Mizera; Miroslav Manas; Lenka Hylova; Martin Bednarik; Michal Stanek
This article deals with the influence of electron-beam radiation on the micro-mechanical, thermo-mechanical, and structural properties of selected polymers. In the search for the desired improvement of polymers, it is possible to use, inter alia, one particular possible modification—Namely, crosslinking—Which is a process during which macromolecular chains start to connect to each other and, thus, create the spatial network in the structure. In the course of the treatment of the ionizing radiation, two actions can occur: crosslinking and scission of macromolecules, or degradation. Both these processes run in parallel. Using the crosslinking technology, standard and technical polymers can acquire the more “expensive” high-tech polymeric material properties and, thus, replace these materials in many applications. The polymers that were tested were selected from across the whole spectra of thermoplastics, ranging from commodity polymers, technical polymers, as well as high-performance polymers. These polymers were irradiated by different doses of beta radiation (33, 66, 99, 132, 165, and 198 kGy). The micro-mechanical and thermo-mechanical properties of these polymers were measured. When considering the results, it is obvious that irradiation acts on each polymer differently but, always when the optimal dose was found, the mechanical properties increased by up to 36%. The changes of micro-mechanical and thermo-mechanical properties were confirmed by structural measurement when the change of the micro-hardness and modulus corresponded to the crystalline phase change as determined by X-ray and gel content.
Materials Science Forum | 2018
Vojtech Senkerik; Michal Stanek; Martin Ovsik
The aim of this paper is to investigate the behavior of the recycled polymer containing the filler. The recycled polymer under investigation is polypropylene with a glass fiber filler. During grinding of plastic waste particles are formed which have a different size, shape and surface, from larger pieces to dust particles. Several recycled mixtures were made, all from original material. Samples with different particle size of recycled material were subsequently tested by mechanical testing. Included tests were Charpy impact test and Shore hardness test. Testing was conducted at different temperatures; ambient 23 °C and increased temperatures 60 ° and 100 °C. The results show a very large effect on Charpy properties and a lesser influence on the hardness of these mixtures. Mixture of smallest dust particles indicates larges change of measured properties.
Materials Science Forum | 2018
Martin Ovsik; Michal Stanek; Martin Reznicek; Lenka Hylova
Cross-linking is a process in which polymer chains are associated through chemical bonds. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behavior. This paper describes the effect of electron beam irradiation on the nanoindentation creep of unfilled and glass fiber filled polypropylene (25%). nanoindentation creep were measured by the DSI (Depth Sensing Indentation) method on samples which were non-irradiated and irradiated by different doses of the β – radiation (0, 30, 45 and 60 kGy). The purpose of the article is to consider to what extent the irradiation process influences the resulting nanoindentation creep measured by the DSI method. The unfilled and filled polypropylene tested showed significant changes of indentation creep. The measured results indicate, that electron beam irradiation is very effective tool for improvement of creep properties of unfilled and filled polypropylene. The nanoindentation creep after irradiated unfilled Polypropylene was decreased up to 16 % (filled polypropylene was decreased up to 9%) compared to non-irradiated surface. These changes were examined and confirmed by Gel content.
Key Engineering Materials | 2017
Vojtech Senkerik; Michal Stanek; Martin Ovsik; Lenka Hylova
This research paper studies the influence of preparation method of recycled polymer material with glass fibers on the tensile properties of the final product. The recycled material was made from polypropylene, which originally contained 30 % of glass fibers. It was divided into fractions using size of the crushed particles. These fractions ranged from large particles, similar to the original material, to small dust particles. Measurements were performed at various temperatures. It was found that the mixture of dust particles showed a large decrease in measured properties. It is mainly due to shortening of the large glass fibers, so that it no longer fulfills its function as reinforcing filler. Conversely, mixture with larger particles did not show a significant decrease in properties compared to the original material.
Key Engineering Materials | 2016
Martin Ovsik; David Manas; Miroslav Manas; Michal Stanek; Martin Reznicek
Radiation crosslinking of polyamidu 6 (PA 6) is a well-recognized modification of improving basic material characteristics. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. This research paper deals with the possible utilization of irradiated PA6. The material already contained a special cross-linking agent TAIC (5 volume %), which should enable subsequent cross-linking by ionizing β – radiation (15, 30 and 45 kGy). The effect of the irradiation on mechanical behavior of the tested PA 6 was investigated. Material properties created by β – radiation are measured by nanoindentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of nanoindentation test shows increasing in nanomechanical properties of surface layer. The highest values of nanomechanical properties were reached radiation dose of 45 kGy, when the nanomechanical values increased by about 95%. These results indicate advantage cross-linking of the improved mechanical properties.
Key Engineering Materials | 2015
Martin Reznicek; Martin Ovsik; Martin Bednarik; Petr Kratky; David Manas
The main goal of this paper is to compare measurements of creep behavior of Crosslinking polymer materials. Creep properties have been measured by two methods, first is micro-indentation with Depth Sensing Indention (DSI) and the second method is long-term creep test in room temperature. By using of these principally different methods can be better analyzed the influence of radiation netting, and therefore better suggest an appropriate dose of radiation with respect to use of polymer material in practice. The evaluation criteria for DSI test is index CIT [%]. The evaluation criteria for the standard creep test is value of average elongation at the end of the test. Comparison of these two values shows slight influence of radiation dose with using the standard creep test instead of using micro-indentation creep test, which shows very slight influence of radiation dose on material.