Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin R. Graf is active.

Publication


Featured researches published by Martin R. Graf.


Cancer Biology & Therapy | 2008

Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation

Margaret A. Park; Guo Zhang; Aditi Pandya Martin; Hossein A. Hamed; Clint Mitchell; Philip B. Hylemon; Martin R. Graf; Mohamed Rahmani; Kevin M. Ryan; Xiang Liu; Sarah Spiegel; James S. Norris; Paul B. Fisher; Steven Grant; Paul Dent

We recently noted that low doses of sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I trials. The present studies mechanistically extended our initial observations. Low doses of sorafenib and vorinostat, but not the individual agents, caused an acidic sphingomyelinase and fumonisin B1-dependent increase in CD95 surface levels and CD95 association with caspase 8. Knock down of CD95 or FADD expression reduced sorafenib/vorinostat lethality. Signaling by CD95 caused PERK activation that was responsible for both promoting caspase 8 association with CD95 and for increased eIF2α phosphorylation; suppression of eIF2α function abolished drug combination lethality. Cell killing was paralleled by PERK- and eIF2α-dependent lowering of c-FLIP-s protein levels and overexpression of c-FLIP-s maintained cell viability. In a CD95-, FADD- and PERK-dependent fashion, sorafenib and vorinostat increased expression of ATG5 that was responsible for enhanced autophagy. Expression of PDGFRβ and FLT3 were essential for high dose single agent sorafenib treatment to promote autophagy. Suppression of PERK function reduced sorafenib and vorinostat lethality whereas suppression of ATG5 levels elevated sorafenib and vorinostat lethality. Overexpression of c-FLIP-s blocked apoptosis and enhanced drug-induced autophagy. Thus sorafenib and vorinostat promote ceramide-dependent CD95 activation followed by induction of multiple downstream survival regulatory signals: ceramide-CD95-PERK-FADD-pro-caspase 8 (death); ceramide-CD95-PERK-eIF2α-↓c-FLIP-s (death); ceramide-CD95-PERK-ATG5-autophagy (survival).


Clinical Cancer Research | 2008

Vorinostat and Sorafenib Synergistically Kill Tumor Cells via FLIP Suppression and CD95 Activation

Guo Zhang; Margaret A. Park; Clint Mitchell; Hossein A. Hamed; Mohammed Rahmani; Aditi Pandya Martin; David T. Curiel; Adly Yacoub; Martin R. Graf; Ray Lee; John D. Roberts; Paul B. Fisher; Steven Grant; Paul Dent

Purpose and Design: Mechanism(s) by which the multikinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat interact to kill hepatic, renal, and pancreatic adenocarcinoma cells has been defined. Results: Low doses of sorafenib and vorinostat interacted in vitro in a synergistic fashion to kill hepatic, renal, and pancreatic adenocarcinoma cells in multiple short-term viability (24-96 h) and in long-term colony formation assays. Cell killing was suppressed by inhibition of cathepsin proteases and caspase-8 and, to a lesser extent, by inhibition of caspase-9. Twenty-four hours after exposure, the activities of extracellular signal-regulated kinase 1/2, AKT, and nuclear factor-κB were only modestly modulated by sorafenib and vorinostat treatment. However, 24 h after exposure, sorafenib- and vorinostat-treated cells exhibited markedly diminished expression of c-FLIP-s, full-length BID, BCL-2, BCL-XL, MCL-1, XIAP, increased expression of BIM, and increased activation of BAX, BAK, and BAD. Expression of eIF2α S51A blocked sorafenib- and vorinostat-induced suppression of c-FLIP-s levels and overexpression of c-FLIP-s abolished lethality. Sorafenib and vorinostat treatment increased surface levels of CD95 and CD95 association with caspase-8. Knockdown of CD95 or FADD expression significantly reduced sorafenib/vorinostat-mediated lethality. Conclusions: These data show that combined exposure of epithelial tumor cell types to sorafenib and vorinostat diminishes expression of multiple antiapoptotic proteins and promotes activation of the CD95 extrinsic apoptotic and the lysosomal protease pathways, and that suppression of c-FLIP-s expression represents a critical event in transduction of the proapoptotic signals from CD95 to promote mitochondrial dysfunction and death.


Molecular Pharmacology | 2009

Sorafenib and Vorinostat Kill Colon Cancer Cells by CD95-Dependent and -Independent Mechanisms

Teneille Walker; Clint Mitchell; Margaret A. Park; Adly Yacoub; Martin R. Graf; Mohamed Rahmani; Peter J. Houghton; Christina Voelkel-Johnson; Steven Grant; Paul Dent

We examined the interaction between the multikinase inhibitor sorafenib and histone deacetylase inhibitors. Sorafenib and vorinostat synergized (sorafenib + vorinostat) to kill HCT116 and SW480 cells. In SW480 cells, sorafenib + vorinostat increased CD95 plasma membrane levels and promoted death-inducing signal complex (DISC) formation, and drug toxicity was blocked by knockdown of CD95 or overexpression of cellular FLICE-like inhibitory protein (c-FLIP-s). In SW620 cells that are patient-matched to SW480 cells, sorafenib + vorinostat toxicity was significantly lower, which correlated with a lack of CD95 activation and lower expression of ceramide synthase 6 (LASS6). Overexpression of LASS6 in SW620 cells enhanced drug-induced CD95 activation and enhanced tumor cell killing, whereas knockdown of LASS6 in SW480 cells suppressed CD95 activation. Knocking down LASS6 expression also suppressed CD95 activation in hepatoma, pancreatic, and ovarian cancer cells. In HCT116 cells, sorafenib + vorinostat treatment caused DISC formation without reducing c-FLIP-s expression and did not increase CD95 plasma membrane levels; sorafenib + vorinostat exposure killed HCT116 cells via an intrinsic pathway/caspase 9-dependent mechanism. In HCT116 cells, knockdown of CD95 enhanced sorafenib + vorinostat lethality, which correlated with less drug-induced CD95-dependent autophagy. Sorafenib + vorinostat treatment activated the c-Jun NH2-terminal kinase pathway, which was causal in promoting dissociation of Beclin1 from BCL-2, and in promoting autophagy. Knockdown of Beclin1 expression blocked autophagy and enhanced drug toxicity. Our data demonstrate that treatment of colon cancer cells with sorafenib + vorinostat activates CD95 via de novo ceramide synthesis that promotes viability via autophagy or degrades survival via either the extrinsic or intrinsic pathways.


Molecular Pharmacology | 2008

OSU-03012 stimulates PKR-like endoplasmic reticulum-dependent increases in 70-kDa heat shock protein expression, attenuating its lethal actions in transformed cells

Margaret A. Park; Adly Yacoub; Mohammed Rahmani; Guo Zhang; Lori Hart; Michael P. Hagan; Stuart K. Calderwood; Michael Y. Sherman; Costas Koumenis; Sarah Spiegel; Ching-Shih Chen; Martin R. Graf; David T. Curiel; Paul B. Fisher; Steven Grant; Paul Dent

We have further defined mechanism(s) by which 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl}acetamide [OSU-03012 (OSU)], a derivative of the cyclooxygenase-2 (COX2) inhibitor celecoxib but lacking COX2 inhibitory activity, kills transformed cells. In cells lacking expression of protein kinase R-like endoplasmic reticulum kinase (PERK-/-), the lethality of OSU was attenuated. OSU enhanced the expression of Beclin 1 and ATG5 and cleavage of pro-caspase 4 in a PERK-dependent fashion and promoted the Beclin 1- and ATG5-dependent formation of vacuoles containing LC3, followed by a subsequent caspase 4-dependent cleavage of cathepsin B and a cathepsin B-dependent formation of low pH intracellular vesicles; cathepsin B was activated and released into the cytosol and genetic suppression of caspase 4, cathepsin B, or apoptosis-inducing factor function significantly suppressed cell killing. In parallel, OSU caused PERK-dependent increases in 70-kDa heat shock protein (HSP70) expression and decreases in 90-kDa heat shock protein (HSP90) and Grp78/BiP expression. Changes in HSP70 expression were post-transcriptional. Knock-down or small-molecule inhibition of HSP70 expression enhanced OSU toxicity, and overexpression of HSP70 suppressed OSU-induced low pH vesicle formation and lethality. Our data demonstrate that OSU-03012 causes cell killing that is dependent on PERK-induced activation of multiple toxic proteases. OSU-03012 also increased expression of HSP70 in a PERK-dependent fashion, providing support for the contention that OSU-03012-induced PERK signaling promotes both cell survival and cell death processes.


Autophagy | 2008

PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells.

Margaret A. Park; Adly Yacoub; Devanand Sarkar; Luni Emdad; Mohammed Rahmani; Sarah Spiegel; Constantinos Koumenis; Martin R. Graf; David T. Curiel; Steven Grant; Paul B. Fisher; Paul Dent

Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The studies by Yacoub et al. (Mol Cancer Ther 2008; In press) further defines the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that were dependent on activation of JNK1-3 with subsequent activation of BAX and the induction of mitochondrial dysfunction. Activation of JNK1-3 was dependent upon protein kinase R-like endoplasmic reticulum kinase (PERK) and GST-MDA-7 lethality was suppressed in PERK-/- cells. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methyladenine, expression of HSP70 or of BiP/GRP78, or by knockdown of ATG5 or Beclin 1 expression, but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin 1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data demonstrate that GST-MDA-7 induces an ER stress response that, via the induction of autophagy, is causal in the activation of pro-apoptotic pathways that converge on the mitochondrion and ultimately culminate in decreased glioma cell survival. Addendum to: Yacoub A, Park MA, Gupta P, Rahmani P, Zhang G, Hamed H, Hanna D, Sarkar D, Lebedeva, IV Emdad L, Sauane M, Vozhilla N, Spiegel S, Koumenis C, Graf M, Curiel DT, Grant S, Fisher PB, Dent P. Mol Cancer Ther 2008; In press.


Cancer Immunology, Immunotherapy | 2001

Cytotoxic T cells infiltrating a glioma express an aberrant phenotype that is associated with decreased function and apoptosis

Robert M. Prins; Martin R. Graf; Randall E. Merchant

Abstract In this study, we report on novel alterations found in rat intracranial (i.c.) tumor-infiltrating T lymphocytes (TIL) that are indicative of T cell defects and death. FACS analysis showed that the cytotoxic T cells (CTL) infiltrating rat T9.F gliomas were CD3ɛ+, αβTCR+, CD8α+, but CD8β−. These lymphocytes also stained positive for the B cell-specific marker, CD45RA, as well as Annexin-V, signifying apoptotic changes. Functional and biochemical analyses were performed to assess whether the aberrant phenotype was linked to other defects. When CD8α+ TIL were purified and stimulated in vitro, their proliferative capacity was markedly diminished in comparison with CD3+CD8α+CD8β+ T cells isolated from the spleens of naive, non tumor-bearing rats. Furthermore, the mean fluorescence intensity of surface CD3ɛ was dramatically reduced in the CD3+CD8α+CD8β− TIL population as compared with CD3+CD8α+CD8β+ TIL from the same tumor-bearing animal. Biochemical studies revealed that the expression of TCRζ and LAT were reduced in lysates generated from CD8α-purified TIL with respect to CD8α-purified T cells from naive spleen. We believe that these degenerative changes are reflective of chronic T cell receptor ligation, because in vitro culture of rat splenocytes or purified T cells with ConA or anti-CD3 mAb induced the same alterations. In vitro, the downregulation of CD8β could be inhibited by the caspase inhibitor, z-VAD. These results suggest that the aberrant CTL phenotype found in the TIL of glioma-bearing rats may be novel signals for their impending death and degenerating anti-tumor immune function.


Molecular Cancer Therapeutics | 2009

MDA-7/IL-24–induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK–dependent mechanism

Margaret A. Park; Teneille Walker; Aditi Pandya Martin; Jeremy C. Allegood; Nicollaq Vozhilla; Luni Emdad; Devanand Sarkar; Mohammed Rahmani; Martin R. Graf; Adly Yacoub; Costas Koumenis; Sarah Spiegel; David T. Curiel; Christina Voelkel-Johnson; Steven Grant; Paul B. Fisher; Paul Dent

Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7–induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal–regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH2-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7–induced phosphorylation of protein kinase R–like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R–like endoplasmic reticulum kinase that correlated with reduced c-jun NH2-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal–regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.[Mol Cancer Ther 2009;8(5):OF1–12]


Cancer Immunology, Immunotherapy | 2002

Irradiated tumor cell vaccine for treatment of an established glioma. II. Expansion of myeloid suppressor cells that promote tumor progression

Robert M. Prins; Gail P. Scott; Randall E. Merchant; Martin R. Graf

Abstract. These studies report the identification of a population of myeloid suppressor cells (MSC) that are preferentially enriched in the spleens and tumor-infiltrating mononuclear cells (TIMC) from T9.F-vaccinated animals. In this model designed to mimic immunotherapy for an established intracranial (i.c.) glioma, animals were given an i.c. inoculum with 5×104 T9 glioma cells at day 0, followed by a subcutaneous (s.c.) injection of 5×106 irradiated T9.F glioma cells 5 days later. Unexpectedly, we found that the survival of these T9.F-vaccinated animals was dramatically shorter than their age-matched counterparts who received only saline injections. Since MSC have previously been demonstrated to be associated with tumor progression, the question arose of whether MSC might play a role in the rapid tumor progression observed in this model. Analysis of the spleen cells and TIMC revealed an increase in the population of myeloid cells expressing granulocytic and monocytic markers. Both the polyclonal and tumor-specific proliferation of splenic T cells and tumor-infiltrating T lymphocytes (T-TIL) from T9.F-vaccinated animals were significantly inhibited in the presence of these myeloid cells. Furthermore, the adoptive transfer of MSC into animals bearing a 5-day T9 glioma caused rapid tumor progression. Reduced survival of the glioma-bearing vaccinated rats was associated with enhanced tumor growth, as well as with an increased density of T-TIL. However, purified T-TIL did not show any discernable signs of inherent defects in terms of their effector functions and T cell receptor (TCR) signal transduction protein levels. Therefore, we believe that an MSC population is responsible for inhibiting the anti-tumor T cell response, resulting in the enhanced growth of the i.c. glioma, and may represent a significant obstacle to immune-based therapies.


Journal of Immunology | 2001

IL-6 secretion by a rat T9 glioma clone induces a neutrophil-dependent antitumor response with resultant cellular, antiglioma immunity.

Martin R. Graf; Robert M. Prins; Randall E. Merchant

Previously, we reported that IL-6 transduction attenuates tumor formation of a rat T9 glioma clone (termed T9.F). This study focuses on the mechanisms of the antitumor response elicited by IL-6 and the generation of glioma immunity. Ten days post s.c. inoculation of T9.F- or IL-6-secreting T9.F cells (T9.F/IL6/hi), tumor nodules were removed and their leukocytic infiltrate was analyzed by FACS with Ab markers for T cells, B cells, granulocytes, and monocytes. T9.F/IL6/hi tumors showed a marked increase in granulocytes as compared with parental T9.F tumors, and histological examination revealed that the granulocytes were neutrophils. Animals made neutropenic failed to reject T9.F/IL6/hi tumors. FACS analysis of 17-day T9.F/IL6/hi regressing tumors and T9.F progressing tumors did not reveal any significant differences in the leukocytic infiltrates. Tumor-specific effector cells were detected in the spleens harvested from animals bearing 17-day, regressing, T9.F/IL6/hi tumors. In vitro, these effector cells lysed T9.F cells, proliferated in response to T9.F stimulator cells, and produced Th1 cytokines (IL-2 and IFN-γ) but not the Th2 cytokine, IL-4, when cocultured with T9.F stimulator cells. Rats that had rejected s.c. T9.F/IL6/hi tumors displayed a delayed-type hypersensitivity response when injected with viable T9.F cells in the contralateral flank. Passive transfer of spleen cells from these animals transferred glioma immunity to naive recipients and depletion of CD3+ T cells, before transfer, completely abolished immunity, whereas depletion of CD8+ T cells had moderate inhibitory effects on the transfer of immunity.


Journal of Biological Chemistry | 2008

Multiple Cyclin Kinase Inhibitors Promote Bile Acid-induced Apoptosis and Autophagy in Primary Hepatocytes via p53-CD95-dependent Signaling

Guo Zhang; Margaret A. Park; Clint Mitchell; Teneille Walker; Hossein A. Hamed; Elaine Studer; Martin R. Graf; Mohamed Rahmani; Seema Gupta; Philip B. Hylemon; Paul B. Fisher; Steven Grant; Paul Dent

Previously, using primary hepatocytes residing in early G1 phase, we demonstrated that expression of the cyclin-dependent kinase (CDK) inhibitor protein p21Cip-1/WAF1/mda6 (p21) enhanced the toxicity of deoxycholic acid (DCA) + MEK1/2 inhibitor. This study examined the mechanisms regulating this apoptotic process. Overexpression of p21 or p27Kip-1 (p27) enhanced DCA + MEK1/2 inhibitor toxicity in primary hepatocytes that was dependent on expression of acidic sphingomyelinase and CD95. Overexpression of p21 suppressed MDM2, elevated p53 levels, and enhanced CD95, BAX, NOXA, and PUMA expression; knockdown of BAX/NOXA/PUMA reduced CDK inhibitor-stimulated cell killing. Parallel to cell death processes, overexpression of p21 or p27 profoundly enhanced DCA + MEK1/2 inhibitor-induced expression of ATG5 and GRP78/BiP and phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) and eIF2α, and it increased the numbers of vesicles containing a transfected LC3-GFP construct. Incubation of cells with 3-methyladenine or knockdown of ATG5 suppressed DCA + MEK1/2 inhibitor-induced LC3-GFP vesicularization and enhanced DCA + MEK1/2 inhibitor-induced toxicity. Expression of dominant negative PERK blocked DCA + MEK1/2 inhibitor-induced expression of ATG5, GRP78/BiP, and eIF2α phosphorylation and prevented LC3-GFP vesicularization. Knock-out or knockdown of p53 or CD95 abolished DCA + MEK1/2 inhibitor-induced PERK phosphorylation and prevented LC3-GFP vesicularization. Thus, CDK inhibitors suppress MDM2 levels and enhance p53 expression that facilitates bile acid-induced, ceramide-dependent CD95 activation to induce both apoptosis and autophagy in primary hepatocytes.

Collaboration


Dive into the Martin R. Graf's collaboration.

Top Co-Authors

Avatar

Paul Dent

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Margaret A. Park

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Grant

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Paul B. Fisher

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adly Yacoub

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Clint Mitchell

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

David T. Curiel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Guo Zhang

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge