Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin R. Schiller is active.

Publication


Featured researches published by Martin R. Schiller.


Neuron | 2003

Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin

Peter Penzes; Alexander Beeser; Jonathan Chernoff; Martin R. Schiller; Betty A. Eipper; Richard E. Mains; Richard L. Huganir

The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF kalirin to synapses and activation of Rac1 and its effector PAK. Overexpression of dominant-negative EphB receptor, catalytically inactive kalirin, or dominant-negative Rac1, or inhibition of PAK eliminates ephrin-induced spine development. This novel signal transduction pathway may be critical for the regulation of the actin cytoskeleton controlling spine morphogenesis during development and plasticity.


Nature Methods | 2006

Minimotif Miner: a tool for investigating protein function

Sudha Balla; Vishal Thapar; Snigdha Verma; ThaiBinh Luong; Tanaz Faghri; Chun-Hsi Huang; Sanguthevar Rajasekaran; Jacob J. del Campo; Jessica H Shinn; William A. Mohler; Mark W. Maciejewski; Michael R. Gryk; Bryan Piccirillo; Stanley R Schiller; Martin R. Schiller

In addition to large domains, many short motifs mediate functional post-translational modification of proteins as well as protein-protein interactions and protein trafficking functions. We have constructed a motif database comprising 312 unique motifs and a web-based tool for identifying motifs in proteins. Functional motifs predicted by MnM can be ranked by several approaches, and we validated these scores by analyzing thousands of confirmed examples and by confirming prediction of previously unidentified 14-3-3 motifs in EFF-1.


American Journal of Pathology | 1999

Molecular Genetic Alterations in Radiation-Induced Astrocytomas

Daniel J. Brat; C. David James; Anne E. Jedlicka; Denise C. Connolly; Ed Chang; Rudy J. Castellani; Mathias Schmid; Martin R. Schiller; Dennis A. Carson; Peter C. Burger

Astrocytic tumors occasionally arise in the central nervous system following radiotherapy. It is not clear if these gliomas represent a unique molecular genetic subset. We identified nine cases in which an astrocytoma arose within ports of previous radiation therapy, with total doses ranging from 2400 to 5500 cGy. Irradiated primary lesions included craniopharyngioma, pituitary adenoma, Hodgkins lymphoma, ependymoma, pineal neoplasm, rhabdomyosarcoma, and three cases of lymphoblastic malignancies. Patients ranged from 9 to 60 years of age and developed secondary tumors 5 to 23 years after radiotherapy. The 9 postradiation neoplasms presented as either anaplastic astrocytoma (3 cases) or glioblastoma multiforme (6 cases). Two of the latter contained malignant mesenchymal components. We performed DNA sequence analysis, differential polymerase chain reaction (PCR), and quantitative PCR on DNA from formalin-fixed, paraffin-embedded tumors to evaluate possible alterations of p53, PTEN, K-ras, EGFR, MTAP, and p16 (MTS1/CDKN2) genes. By quantitative PCR, we found EGFR gene amplification in 2 of 8 tumors. One of these demonstrated strong immunoreactivity for EGFR. Quantitative PCR showed chromosome 9p deletions including p16 tumor suppressor gene (2 of 7 tumors) and MTAP gene (3 of 7). Five of 9 tumors demonstrated diffuse nuclear immunoreactivity for p53 protein. Sequencing of the p53 gene in these 9 cases revealed a mutation in only one of these cases, a G-to-A substitution in codon 285 (exon 8). Somewhat unexpectedly, no mutations were identified in PTEN, a commonly altered tumor suppressor gene in de novo glioblastoma multiformes. Unlike some radiation-induced tumors, no activating point mutations of the K-ras proto-oncogene or base pair deletions of tumor suppressor genes were noted. These radiation-induced tumors are distinctive in their high histological grade at clinical presentation. The spectrum of molecular genetic alterations appears to be similar to that described in spontaneous high grade astrocytomas, especially those of the de novo type.


American Journal of Human Genetics | 2011

Loss-of-function mutations of ILDR1 cause autosomal-recessive hearing impairment DFNB42.

Guntram Borck; Atteeq U. Rehman; Kwanghyuk Lee; Hans Martin Pogoda; Naseebullah Kakar; Simon von Ameln; Nicolas Grillet; Michael S. Hildebrand; Zubair M. Ahmed; Gudrun Nürnberg; Muhammad Ansar; Sulman Basit; Qamar Javed; Robert J. Morell; Nabilah Nasreen; A. Eliot Shearer; Adeel Ahmad; Kimia Kahrizi; Rehan Sadiq Shaikh; Shaheen N. Khan; Ingrid Goebel; Nicole C. Meyer; William J. Kimberling; Jennifer A. Webster; Dietrich A. Stephan; Martin R. Schiller; Melanie Bahlo; Hossein Najmabadi; Peter G. Gillespie; Peter Nürnberg

By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.


Nucleic Acids Research | 2009

Minimotif miner 2nd release: a database and web system for motif search

Sanguthevar Rajasekaran; Sudha Balla; Patrick R. Gradie; Michael R. Gryk; Krishna Kadaveru; Vamsi Kundeti; Mark W. Maciejewski; Tian Mi; Nicholas Rubino; Jay Vyas; Martin R. Schiller

Minimotif Miner (MnM) consists of a minimotif database and a web-based application that enables prediction of motif-based functions in user-supplied protein queries. We have revised MnM by expanding the database more than 10-fold to approximately 5000 motifs and standardized the motif function definitions. The web-application user interface has been redeveloped with new features including improved navigation, screencast-driven help, support for alias names and expanded SNP analysis. A sample analysis of prion shows how MnM 2 can be used. Weblink: http://mnm.engr.uconn.edu, weblink for version 1 is http://sms.engr.uconn.edu.


Frontiers in Bioscience | 2008

Viral infection and human disease--insights from minimotifs.

Krishna Kadaveru; Jay Vyas; Martin R. Schiller

Short functional peptide motifs cooperate in many molecular functions including protein interactions, protein trafficking, and posttranslational modifications. Viruses exploit these motifs as a principal mechanism for hijacking cells and many motifs are necessary for the viral life-cycle. A virus can accommodate many short motifs in its small genome size providing a plethora of ways for the virus to acquire host molecular machinery. Host enzymes that act on motifs such as kinases, proteases, and lipidation enzymes, as well as protein interaction domains, are commonly mutated in human disease, suggesting that the short peptide motif targets of these enzymes may also be mutated in disease; however, this is not observed. How can we explain why viruses have evolved to be so dependent on motifs, yet these motifs, in general do not seem to be as necessary for human viability? We propose that short motifs are used at the system level. This system architecture allows viruses to exploit a motif, whereas the viability of the host is not affected by mutation of a single motif.


Molecular and Cellular Biology | 2005

Critical role for Kalirin in nerve growth factor signaling through TrkA.

Rong Lin; Noraisha I. Schiller; Yanping Wang; David Koubi; Ying-Xin Fan; Brian B. Rudkin; Gibbes R. Johnson; Martin R. Schiller

ABSTRACT Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. Furthermore, elevated Kalirin expression resulted in catalytic activation of TrkA, as demonstrated by in vitro kinase assays and increased NGF-stimulated cellular activation of Rac, Mek, and CREB. Domain mapping demonstrated that the N-terminal Kalirin pleckstrin homology domain mediates the interaction with TrkA. The effects of Kalirin on TrkA provide a molecular basis for the requirement of Kalirin in process extension from PC12 cells and for previously observed effects on axonal extension and dendritic maintenance. The interaction of TrkA with the pleckstrin homology domain of Kalirin may be one example of a general mechanism whereby receptor/Rho GEF pairings play an important role in receptor tyrosine kinase activation and signal transduction.


Nucleic Acids Research | 2012

Minimotif Miner 3.0: database expansion and significantly improved reduction of false-positive predictions from consensus sequences.

Tian Mi; Jerlin Camilus Merlin; Sandeep Deverasetty; Michael R. Gryk; Travis J. Bill; Andy Brooks; Logan Y. Lee; Viraj Rathnayake; Christian A. Ross; David P. Sargeant; Christy L. Strong; Paula Watts; Sanguthevar Rajasekaran; Martin R. Schiller

Minimotif Miner (MnM available at http://minimotifminer.org or http://mnm.engr.uconn.edu) is an online database for identifying new minimotifs in protein queries. Minimotifs are short contiguous peptide sequences that have a known function in at least one protein. Here we report the third release of the MnM database which has now grown 60-fold to approximately 300 000 minimotifs. Since short minimotifs are by their nature not very complex we also summarize a new set of false-positive filters and linear regression scoring that vastly enhance minimotif prediction accuracy on a test data set. This online database can be used to predict new functions in proteins and causes of disease.


Journal of Biological Chemistry | 2006

Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions

Martin R. Schiller; Glenn F. King; Noraisha I. Schiller; Betty A. Eipper; Mark W. Maciejewski

RhoGEFs are central controllers of small G-proteins in cells and are regulated by several mechanisms. There are at least 22 human RhoGEFs that contain SH3 domains, raising the possibility that, like several other enzymes, SH3 domains control the enzymatic activity of guanine nucleotide exchange factor (GEF) domains through intra- and/or intermolecular interactions. The structure of the N-terminal SH3 domain of Kalirin was solved using NMR spectroscopy, and it folds much like other SH3 domains. However, NMR chemical shift mapping experiments showed that this Kalirin SH3 domain is unique, containing novel cooperative binding site(s) for intramolecular PXXP ligands. Intramolecular Kalirin SH3 domain/ligand interactions, as well as binding of the Kalirin SH3 domain to the adaptor protein Crk, inhibit the GEF activity of Kalirin. This study establishes a novel molecular mechanism whereby intramolecular and intermolecular Kalirin SH3 domain/ligand interactions modulate GEF activity, a regulatory mechanism that is likely used by other RhoGEF family members.


Nucleic Acids Research | 2009

VENN, a tool for titrating sequence conservation onto protein structures

Jay Vyas; Michael R. Gryk; Martin R. Schiller

Residue conservation is an important, established method for inferring protein function, modularity and specificity. It is important to recognize that it is the 3D spatial orientation of residues that drives sequence conservation. Considering this, we have built a new computational tool, VENN that allows researchers to interactively and graphically titrate sequence homology onto surface representations of protein structures. Our proposed titration strategies reveal critical details that are not readily identified using other existing tools. Analyses of a bZIP transcription factor and receptor recognition of Fibroblast Growth Factor using VENN revealed key specificity determinants. Weblink: http://sbtools.uchc.edu/venn/.

Collaboration


Dive into the Martin R. Schiller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Gryk

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Jay Vyas

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Betty A. Eipper

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark W. Maciejewski

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Richard E. Mains

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Tian Mi

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge