Martin Sládek
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Sládek.
Journal of Biological Rhythms | 2003
Alena Sumová; Martin Jáč; Martin Sládek; Ivo Sauman; Helena Illnerová
Rhythmicity of the rat suprachiasmatic nucleus (SCN), a site of the circadian pacemaker, is affected by daylength; that is, by the photoperiod. Whereas various markers of rhythmicity have been followed, so far there have been no studies on the effect of the photoperiod on the expression of the clock genes in the rat SCN. To fill the gap and to better understand the photoperiodic modulation of the SCN state, rats were maintained either under a long photoperiod with 16 h of light and 8 h of darkness per day (LD16:8) or under a short LD8:16 photoperiod, and daily profiles of Per1, Cry1, Bmal1 and Clock mRNA in darkness were assessed by in situ hybridization method. The photoperiod affected phase, waveform, and amplitude of the rhythmic gene expression as well as phase relationship between their profiles. Under the long period, the interval of elevated Per1 mRNA lasted for a longer and that of elevated Bmal1 mRNA for a shorter time than under the short photoperiod. Under both photoperiods, the morning and the daytime Per1 and Cry1 mRNA rise as well as the morning Bmal1 mRNA decline were closely linked to the morning light onset. Amplitude of Per1, Cry1, and Bmal1 mRNA rhythms was larger under the short than under the long photoperiod. Also, under the short photoperiod, the daily Clock mRNA profile exhibited a significant rhythm. Altogether, the data indicate that the whole complex molecular clockwork in the rat SCN is photoperiod dependent and hence may differ according to the season of the year.
Chronobiology International | 2011
Lenka Polidarová; Martin Sládek; Matúš Soták; Jiří Pácha; Alena Sumová
Physiological functions of the gastrointestinal tract (GIT) are temporally controlled such that they exhibit circadian rhythms. The circadian rhythms are synchronized with the environmental light-dark cycle via signaling from the central circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus, and by food intake. The aim of the study was to determine the extent to which disturbance in the SCN signaling via prolonged exposure to constant light affects circadian rhythms in the liver, duodenum, and colon, as well as to determine whether and to what extent food intake can restore rhythmicity in individual parts of the GIT. Adult male rats were maintained in constant light (LL) for 30 days and fed ad libitum throughout the entire interval or exposed to a restricted feeding (RF) regime for the last 14 days in LL. Locomotor and feeding behaviors were recorded throughout the experiment. On the 30th day, daily expression profiles of clock genes (Per1, Per2, Rev-erbα, and Bmal1) and of clock-controlled genes (Wee1 and Dbp) were measured by real-time reverse transcriptase–polymerase chain reaction (RT-PCR) in the duodenum, colon, and liver. By the end of the LL exposure, rats fed ad libitum had completely lost their circadian rhythms in activity and food intake. Daily expression profiles of clock genes and clock-controlled genes in the GIT were impaired to an extent depending on the tissue and gene studied, but not completely abolished. In the liver and colon, exposure to LL abolished circadian rhythms in expression of Per1, Per2, Bmal1, and Wee1, whereas it impaired, but preserved, rhythms in expression of Rev-erbα and Dbp. In the duodenum, all but Wee1 expression rhythms were preserved. Restricted feeding restored the rhythms to a degree that varied with the tissue and gene studied. Whereas in the liver and duodenum the profiles of all clock genes and clock-controlled genes became rhythmic, in the colon only Per1, Bmal1, and Rev-erbα—but not Per2, Wee1, and Dbp—were expressed rhythmically. The data demonstrate a greater persistence of the rhythmicity of the circadian clocks in the duodenum compared with that in the liver and colon under conditions when signaling from the SCN is disrupted. Moreover, disrupted rhythmicity may be restored more effectively by a feeding regime in the duodenum and liver compared to the colon. (Author correspondence: [email protected])
Journal of Biological Rhythms | 2006
Zuzana Kováčiková; Martin Sládek; Zdenka Bendová; Helena Illnerová; Alena Sumová
The SCN as a site of the circadian clock itself exhibits rhythmicity. A molecular clockwork responsible for the rhythmicity consists of clock genes and their negative and positive transcriptional-translational feedback loops. The authors’ previous work showed that rhythms in clock gene expression in the rat SCN were not yet detectable at embryonic day (E) 19 but were already present at postnatal day (P) 3. The aim of the present study was to elucidate when during the interval E19-P3 the rhythms start to develop in clock gene expression and in clock-controlled, namely in arginine-vasopressin (AVP), gene expression. Daily profiles of Per1, Per2, Cry1, Bmal1, and Clock mRNA and of AVP heteronuclear (hn) RNA as an indicator of AVP gene transcription were assessed in the SCN of fetuses at E20 and of newborn rats at P1 and P2 by the in situ hybridization method. At E20, formation of a rhythm in Per1 expression was indicated, but no rhythms in expression of other clock genes or of the AVP gene were detected. At P1, rhythms in Per1, Bmal1, and AVP and a forming rhythm in Per2 but no rhythm in Cry1 expression were present in the SCN. The Per1 mRNA rhythm was, however, only slightly pronounced. The Bmal1 mRNA rhythm, although pronounced, exhibited still an atypical shape. Only the AVP hnRNA rhythm resembled that of adult rats. At P2, marked rhythms of Per1, Per2, and Bmal1 and a forming rhythm of Cry1, but not of Clock, expression were present. The data suggest that rhythms in clock gene expression for the most part develop postnatally and that other mechanisms besides the core clockwork might be involved in the generation of the rhythmic AVP gene expression in the rat SCN during early ontogenesis.
Brain Research | 2002
Alena Sumová; Martin Sládek; Martin Jáč; Helena Illnerová
The suprachiasmatic nucleus (SCN) of rats maintained under a 12-h light, 12-h dark cycle (LD12:12) as well as of those released into darkness exhibited the rhythm of a clock gene Per1 product, PER1 protein, with the maximum late in the subjective day and early night and minimum in the morning. The rhythm was phase delayed by 6-8 h compared with the reported rhythm of Per1 mRNA in the rat SCN [L. Yan et al. Neuroscience 94 (1999) 141]. Under a long, LD16:8, artificial photoperiod, the interval of elevated PER1-immunoreactivity was at least 4 h longer than that under a short, LD 8:16 photoperiod, due mainly to an earlier PER1 day-time rise under the long photoperiod. Under a natural photoperiod, profiles of the PER1 rhythm in summer and in winter resembled those under corresponding artificial photoperiods; therefore, twilight did not affect the rhythm in a substantial way. Under all photoperiods, when PER1 immunoreactivity was elevated, immunopositive cells were localized in the dorsomedial rather than in the ventrolateral part of the SCN. As the Per1 gene is a part of a molecular clockwork and as the rhythm of its product is modulated by the photoperiod, it appears that the whole molecular clockwork in the rat SCN is photoperiod-dependent and thus shaped by the season of the year.
Chronobiology International | 2009
Lenka Polidarová; Matúš Soták; Martin Sládek; Jiří Pácha; Alena Sumová
Circadian clocks were recently discovered in the rat and mouse colon as well as mouse stomach and jejunum. The aim of this study was to determine whether clocks in the upper part of the gut are synchronized with those in the lower part, or whether there is a difference in their circadian phases. Moreover, the profiles of core clock-gene expression were compared with the profiles of the clock-driven Wee1 gene expression in the upper and lower parts of the gut. Adult rats were transferred to constant darkness on the day of sampling. 24 h expression profiles of the clock genes Per1, Per2, Rev-erbα, and Bmal1 and the cell-cycle regulator Wee1 were examined by a reverse transcriptase-polymerase chain reaction within the epithelium of the rat duodenum, ileum, jejunum, and colon. In contrast to the duodenum, the rhythms in expression of all genes but Rev-erbα and Bmal1 in the colon exhibited non-sinusoidal profiles. Therefore, a detailed analysis of the gene expression every 1 h within the 12 h interval corresponding to the previous lights-on was performed. The data demonstrate that rhythmic profiles of the clock gene Per1, Per2, Bmal1, Rev-erbα, and clock-driven Wee1 expression within the epithelium from different parts of the rat gut exhibited a difference in phasing, such that the upper part of the gut, as represented by the duodenum, was phase-advanced to the lower part, as represented by the distal colon. Our data demonstrate that the circadian clocks within each part of the gut are mutually synchronized with a phase delay in the cranio-caudal axis. Moreover, they support the view that the individual circadian clocks may control the timing of cell cycle within different regions of the gut.
FEBS Letters | 2006
Alena Sumová; Zdenka Bendová; Martin Sládek; Rehab El‐Hennamy; Kristýna Laurinová; Zuzana Jindráková; Helena Illnerová
In mammals, the principal circadian clock within the suprachiasmatic nucleus (SCN) entrains the phase of clocks in numerous peripheral tissues and controls the rhythmicity in various body functions. During ontogenesis, the molecular mechanism responsible for generating circadian rhythmicity develops gradually from the prenatal to the postnatal period. In the beginning, the maternal signals set the phase of the newly developing fetal and early postnatal clocks, whereas the external light–dark cycle starts to entrain the clocks only later. This minireview discusses the complexity of signaling pathways from mothers and the outside world to the fetal and newborn animals’ circadian clocks.
The Journal of Clinical Endocrinology and Metabolism | 2012
Marta Nováková; Soňa Nevšímalová; Iva Příhodová; Martin Sládek; Alena Sumová
CONTEXT Smith-Magenis syndrome (SMS) is associated with sleep disturbances and disrupted melatonin production. OBJECTIVES The study aimed to ascertain whether the sleep and melatonin production anomalies in SMS patients may be due to an alteration of the molecular mechanism of the circadian clock. SUBJECTS AND METHODS Five SMS patients (3-17 yr old) and five healthy age-matched control subjects were involved in the study. Saliva and buccal scrub samples were collected every 4 h during a 24-h period. Daily profiles of melatonin were determined in saliva using a direct double-antibody radioimmunoassay. Daily profiles of clock gene mRNA levels (Per1, Per2, and Rev-erbα) were determined in buccal scrub samples by RT-PCR. RESULTS In controls, melatonin levels were elevated during the nighttime and very low during the daytime. Daily profiles of clock genes, Per1, Per2, and Rev-erbα, mRNA levels in buccal mucosa exhibited significant and mutually synchronized circadian variations (Per1 and Rev-erbα: P < 0.001; Per2: P < 0.05); the mRNA levels were elevated during the daytime and decreased during the nighttime. In SMS patients, melatonin profiles were significantly altered compared with controls, being phase reversed, phase advanced, depressed, or abolished. Only Per1 and Rev-erbα mRNA profiles exhibited significant circadian rhythms (P < 0.05); the Per2 expression exhibited high variability, and the profile was out of phase with the other clock genes. CONCLUSION Our findings suggest that the anomalies in melatonin profiles of SMS patients might be due to a disturbance of the molecular circadian clockwork.
Chronobiology International | 2013
Marta Nováková; Martin Sládek; Alena Sumová
Individuals differ in their preferred timing of sleep and activity, which is referred to as a chronotype. The timing shows a wide distribution; extremely early chronotypes may wake up when the extremely late chronotypes fall asleep. The chronotype is supposed to be determined by the central circadian clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus because the phasing of the pineal melatonin rhythm, which is driven by the SCN, correlates with the sleep timing preference. In addition to the SCN, circadian oscillators are also present in most if not all bodily cells. These peripheral clocks are synchronized by the central SCN clock and by other tissue-specific entraining cues. At the molecular level, the circadian oscillations are based on a complex, self-sustaining mechanism that drives the rhythmical expression of clock genes and their proteins. The aim of the present field study was to elucidate whether the changes in the internal timing of early and late chronotypes, as expressed by changes in the phases of their mid-sleep and melatonin secretion, can also be detected at the molecular clockwork level in subjects examined under real-life conditions. Ninety-five adult volunteers were chronotyped using an adapted Munich chronotype questionnaire to assess their mid-sleep phase, and 6 subjects with early chronotypes and 6 with late chronotypes were chosen for the study. For the assessment of the circadian phase, the subjects provided samples of saliva for the melatonin assay and samples of oral mucosa for the determination of clock gene Per1, Per2, and Rev-erbα mRNA levels every 4 h during a 24-h period. The significant correlation between the phase of the melatonin profile and timing of mid-sleep confirmed the classification of the subjects according to their chronotype. The circadian phases of the Per1, Per2, and Rev-erbα expression profiles in the oral mucosa were advanced in the early chronotypes compared with those in the late chronotypes (p < .001) and correlated significantly with the mid-sleep phase of the individual subjects. Moreover, the circadian phases of the Per1 expression profiles of individual subjects correlated significantly with the phases of their melatonin profiles (p < .05), whereas the correlation for the Per2 and Rev-erbα phases was nonsignificant, although the trend was the same. Our results demonstrate that the individual chronotype in humans living in real-life conditions affects not only the phasing of the daily melatonin rhythm in saliva but also the phasing of Per1, Per2, and Rev-erbα clock gene expression profiles in buccal mucosa cells. This report represents the first demonstration that the human peripheral circadian clock may sense the individuals chronotype under field study conditions. The data contribute to our understanding of the mechanisms underlying human chronotypes in real life. (Author correspondence: [email protected])
European Journal of Neuroscience | 2009
Kristýna Matějů; Zdena Bendová; Rehab El‐Hennamy; Martin Sládek; Serhiy Sosniyenko; Alena Sumová
The molecular mechanism underlying circadian rhythmicity within the suprachiasmatic nuclei (SCN) of the hypothalamus has two light‐sensitive components, namely the clock genes Per1 and Per2. Besides, light induces the immediate‐early gene c‐fos. In adult rats, expression of all three genes is induced by light administered during the subjective night but not subjective day. The aim of the present study was to ascertain when and where within the SCN the photic sensitivity of Per1, Per2 and c‐fos develops during early postnatal ontogenesis. The specific aim was to find out when the circadian clock starts to gate photic sensitivity. The effect of a light pulse administered during either the subjective day or the first or second part of the subjective night on gene expression within the rat SCN was determined at postnatal days (P) 1, 3, 5 and 10. Per1, Per2 and c‐fos mRNA levels were assessed 30 min, 1 and 2 h after the start of each light pulse by in situ hybridization histochemistry. Expression of Per1 and c‐fos was light responsive from P1, and the responses began to be gated by the circadian clock at P3 and P10, respectively. Expression of Per2 was only slightly light responsive at P3, and the response was not fully gated until P5. These data demonstrate that the light sensitivity of the circadian clock develops gradually during postnatal ontogenesis before the circadian clock starts to control the response. The photoinduction of the clock gene Per2 develops later than that of Per1.
Progress in Brain Research | 2012
Alena Sumová; Martin Sládek; Lenka Polidarová; Marta Nováková; Pavel Houdek
In mammals, the circadian system is composed of the central clock in the hypothalamic suprachiasmatic nuclei and of peripheral clocks that are located in other neural structures and in cells of the peripheral tissues and organs. In adults, the system is hierarchically organized so that the central clock provides the other clocks in the body with information about the time of day. This information is needed for the adaptation of their functions to cyclically changing external conditions. During ontogenesis, the system undergoes substantial development and its sensitivity to external signals changes. Perinatally, maternal cues are responsible for setting the phase of the developing clock, while later postnatally, the LD cycle is dominant. The central clock attains its functional properties during a gradual and programmed process. Peripheral clocks begin to exhibit rhythmicity independent of each other at various developmental stages. During the early developmental stages, the peripheral clocks are set or driven by maternal feeding, but later the central clock becomes fully functional and begins to entrain the periphery. During the perinatal period, the central and peripheral clocks seem to be vulnerable to disturbances in external conditions. Further studies are needed to understand the processes of how the circadian system develops and what degree of plasticity and resilience it possesses during ontogenesis. These data may lead to an assessment of the contribution of disturbances of the circadian system during early ontogenesis to the occurrence of circadian diseases in adulthood.