Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Stöckl is active.

Publication


Featured researches published by Martin Stöckl.


Biophysical Journal | 2008

Characterization of the Ternary Mixture of Sphingomyelin, POPC, and Cholesterol: Support for an Inhomogeneous Lipid Distribution at High Temperatures

Andreas Bunge; Peter Müller; Martin Stöckl; Andreas Herrmann; Daniel Huster

A ternary lipid mixture of palmitoyl-oleoyl-phosphatidylcholine (POPC), palmitoyl-erythro-sphingosylphosphorylcholine (PSM), and cholesterol at a mixing ratio of 37.5:37.5:25 mol/mol/mol was characterized using fluorescence microscopy, (2)H NMR, and electron paramagnetic resonance spectroscopy. The synthetic PSM provides an excellent molecule for studying the molecular properties of raft phases. It shows a narrow phase transition at a temperature of 311 K and is commercially available with a perdeuterated sn-2 chain. Fluorescence microscopy shows that large inhomogeneities in the mixed membranes are observed in the coexistence region of liquid-ordered and liquid-disordered lipid phases. Above 310 K, no optically detectable phase separation was shown. Upon decrease in temperature, a redistribution of the cholesterol into large liquid-ordered PSM/cholesterol domains and depletion of cholesterol from liquid-disordered POPC domains was observed by (2)H NMR and electron paramagnetic resonance experiments. However, there is no complete segregation of the cholesterol into the liquid-ordered phase and also POPC-rich domains contain the sterol in the phase coexistence region. We further compared order parameters and packing properties of deuterated PSM or POPC in the raft mixture at 313 K, i.e., in the liquid crystalline phase state. PSM shows significantly larger (2)H NMR order parameters in the raft phase than POPC. This can be explained by an inhomogeneous interaction of cholesterol between the lipid species and the mutual influence of the phospholipids on each other. These observations point toward an inhomogeneous distribution of the lipids also in the liquid crystalline phase at 313 K. From the prerequisite that order parameters are identical in a completely homogeneously mixed membrane, we can determine a minimal microdomain size of 45-70 nm in PSM/POPC/cholesterol mixtures above the main phase transition of all lipids.


Molecular Neurobiology | 2013

α-Synuclein oligomers: an amyloid pore? Insights into mechanisms of alpha-synuclein oligomer-lipid interactions

Martin Stöckl; Niels Zijlstra; Vinod Subramaniam

In many human diseases, oligomeric species of amyloid proteins may play a pivotal role in cytotoxicity. Many lines of evidence indicate that permeabilization of cellular membranes by amyloid oligomers may be the key factor in disrupting cellular homeostasis. However, the exact mechanisms by which the membrane integrity is impaired remain elusive. One prevailing hypothesis, the so-called amyloid pore hypothesis, assumes that annular oligomeric species embed into lipid bilayers forming transbilayer protein channels. Alternatively, an increased membrane permeability could be caused by thinning of the hydrophobic core of the lipid bilayer due to the incorporation of the oligomers between the tightly packed lipids, which would facilitate the transport of small molecules across the membrane. In this review, we briefly recapitulate our findings on the structure of α-synuclein oligomers and the factors influencing their interaction with lipid bilayers. Our results, combined with work from other groups, suggest that α-synuclein oligomers do not necessarily form pore-like structures. The emerging consensus is that local structural rearrangements of the protein lead to insertion of specific regions into the hydrophobic core of the lipid bilayer, thereby disrupting the lipid packing.


Journal of Biological Chemistry | 2008

Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy of fluorescent lipid analogues.

Martin Stöckl; Anna Pia Plazzo; Thomas Korte; Andreas Herrmann

The presence of lipid domains in cellular membranes and their characteristic features are still an issue of dividing discussion. Several recent studies implicate lipid domains in plasma membranes of mammalian cells as short lived and in the submicron range. Measuring the fluorescence lifetime of appropriate lipid analogues is a proper approach to detect domains with such properties. Here, the sensitivity of the fluorescence lifetime of1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-hexanoyl]-sn-glycero-3-phospholipid (C6-NBD-phospholipid) analogues has been employed to characterize lipid domains in giant unilamellar vesicles (GUVs) and the plasma membrane of mammalian cells by fluorescence lifetime imaging (FLIM). Fluorescence decay of C6-NBD-phosphatidylcholine is characterized by a short and long lifetime. For GUVs forming microscopically visible lipid domains the longer lifetime in the liquid disordered (ld) and the liquid ordered (lo) phase was clearly distinct, being ∼7 ns and 11 ns, respectively. Lifetimes were not sensitive to variation of cholesterol concentration of domain-forming GUVs indicating that the lipid composition and physical properties of those lipid domains are well defined entities. Even the existence of submicroscopic domains can be detected by FLIM as demonstrated for GUVs of palmitoyloleoyl phosphatidylcholine/N-palmitoyl-d-sphingomyelin/cholesterol mixtures. A broad distribution of the long lifetime was found for C6-NBD-phosphatidylcholine inserted in the plasma membrane of HepG2 and HeLa cells centered around 11 ns. FLIM studies on lipid domains forming giant vesicles derived from the plasma membrane of HeLa cells may suggest that a variety of submicroscopic lipid domains exists in the plasma membrane of intact cells.


Journal of Biological Chemistry | 2007

Flippase Activity Detected with Unlabeled Lipids by Shape Changes of Giant Unilamellar Vesicles

Andreas Papadopulos; Stefanie Vehring; Iván López-Montero; Lara Kutschenko; Martin Stöckl; Philippe F. Devaux; Michael M. Kozlov; Thomas Günther Pomorski; Andreas Herrmann

Transbilayer movement of phospholipids in biological membranes is mediated by energy-dependent and energy-independent flippases. Available methods for detection of flippase mediated transversal flip-flop are essentially based on spin-labeled or fluorescent lipid analogues. Here we demonstrate that shape change of giant unilamellar vesicles (GUVs) can be used as a new tool to study the occurrence and time scale of flippase-mediated transbilayer movement of unlabeled phospholipids. Insertion of lipids into the external leaflet created an area difference between the two leaflets that caused the formation of a bud-like structure. Under conditions of negligible flip-flop, the bud was stable. Upon reconstitution of the energy-independent flippase activity of the yeast endoplasmic reticulum into GUVs, the initial bud formation was reversible, and the shapes were recovered. This can be ascribed to a rapid flip-flop leading to relaxation of the monolayer area difference. Theoretical analysis of kinetics of shape changes provides self-consistent determination of the flip-flop rate and further kinetic parameters. Based on that analysis, the half-time of phospholipid flip-flop in the presence of endoplasmic reticulum proteins was found to be on the order of few minutes. In contrast, GUVs reconstituted with influenza virus protein formed stable buds. The results argue for the presence of specific membrane proteins mediating rapid flip-flop.


Biophysical Journal | 2010

Hemagglutinin of Influenza Virus Partitions into the Nonraft Domain of Model Membranes

Jörg Nikolaus; Silvia Scolari; Elisa Bayraktarov; Nadine Jungnick; Stephanie Engel; Anna Pia Plazzo; Martin Stöckl; Rudolf Volkmer; Michael Veit; Andreas Herrmann

The HA of influenza virus is a paradigm for a transmembrane protein thought to be associated with membrane-rafts, liquid-ordered like nanodomains of the plasma membrane enriched in cholesterol, glycosphingolipids, and saturated phospholipids. Due to their submicron size in cells, rafts can not be visualized directly and raft-association of HA was hitherto analyzed by indirect methods. In this study, we have used GUVs and GPMVs, showing liquid disordered and liquid ordered domains, to directly visualize partition of HA by fluorescence microscopy. We show that HA is exclusively (GUVs) or predominantly (GPMVs) present in the liquid disordered domain, regardless of whether authentic HA or domains containing its raft targeting signals were reconstituted into model membranes. The preferential partition of HA into ld domains and the difference between lo partition in GUV and GPMV are discussed with respect to differences in packaging of lipids in membranes of model systems and living cells suggesting that physical properties of lipid domains in biological membranes are tightly regulated by protein-lipid interactions.


The FASEB Journal | 2009

Functional implications of the influence of ABCA1 on lipid microenvironment at the plasma membrane: a biophysical study

Ana Zarubica; Anna Pia Plazzo; Martin Stöckl; Tomasz Trombik; Yannick Hamon; Peter K. Müller; Thomas Günther Pomorski; Andreas Herrmann; Giovanna Chimini

The ABCA1 transporter orchestrates cellular lipid homeostasis by promoting the release of cholesterol to plasmatic acceptors. The molecular mechanism is, however, unknown. We report here on the biophysical analysis in living HeLa cells of the ABCA1 lipid microenvironment at the plasma membrane. The modifications of membrane attributes induced by ABCA1 were assessed at both the outer and inner leaflet by monitoring either the lifetime of membrane inserted fluorescent lipid analogues by fluorescence lifetime imaging microscopy (FLIM) or, respectively, the membrane translocation of cationic sensors. Analysis of the partitioning of dedicated probes in plasma membrane blebs vesiculated from these cells allowed visualization of ABCA1 partitioning into the liquid disordered‐like phase and corroborated the idea that ABCA1 destabilizes the lipid arrangement at the membrane. Specificity was demonstrated by comparison with cells expressing an inactive transporter. The physiological relevance of these modifications was finally demonstrated by the reduced membrane mobility and function of transferrin receptors under the influence of an active ABCA1. Collectively, these data assess that the control of both transversal and lateral lipid distribution at the membrane is the primary function of ABCA1 and positions the effluxes of cholesterol from cell membranes downstream to the redistribution of the sterol into readily extractable membrane pools.—Zarubica, A., Plazzo, A.P., Stockl, M., Trombik, T., Hamon, Y., Muller, P., Pomorski, T., Herrmann, A., Chimini, G. Functional implications of the influence of ABCA1 on lipid microenvironment at the plasma membrane: a biophysical study. FASEB J. 23, 1775–1785 (2009)


FEBS Journal | 2014

α-Synuclein oligomers distinctively permeabilize complex model membranes.

A. Stefanovic; Martin Stöckl; Mireille Maria Anna Elisabeth Claessens; Vinod Subramaniam

α‐Synuclein oligomers are increasingly considered to be responsible for the death of dopaminergic neurons in Parkinsons disease. The toxicity mechanism of α‐synuclein oligomers likely involves membrane permeabilization. Even though it is well established that α‐synuclein oligomers bind and permeabilize vesicles composed of negatively‐charged lipids, little attention has been given to the interaction of oligomers with bilayers of physiologically relevant lipid compositions. We investigated the interaction of α‐synuclein with bilayers composed of lipid mixtures that mimic the composition of plasma and mitochondrial membranes. In the present study, we show that monomeric and oligomeric α‐synuclein bind to these membranes. The resulting membrane leakage differs from that observed for simple artificial model bilayers. Although the addition of oligomers to negatively‐charged lipid vesicles displays fast content release in a bulk permeabilization assay, adding oligomers to vesicles with compositions mimicking mitochondrial membranes shows a much slower loss of content. Oligomers are unable to induce leakage in the artificial plasma membranes, even after long‐term incubation. CD experiments indicate that binding to lipid bilayers initially induces conformational changes in both oligomeric and monomeric α‐synuclein, which show little change upon long‐term incubation of oligomers with membranes. The results of the present study demonstrate that the mitochondrial model membranes are more vulnerable to permeabilization by oligomers than model plasma membranes reconstituted from brain‐derived lipids; this preference may imply that increasingly complex membrane components, such as those in the plasma membrane mimic used in the present study, are less vulnerable to damage by oligomers.


Biophysical Journal | 2009

Direct visualization of large and protein-free hemifusion diaphragms.

Jörg Nikolaus; Martin Stöckl; Dieter Langosch; Rudolf Volkmer; Andreas Herrmann

Fusion of cellular membranes is a ubiquitous biological process requiring remodeling of two phospholipid bilayers. We believe it is very likely that merging of membranes proceeds via similar sequential intermediates. Contacting membranes form a stalk between the proximal leaflets that expands radially into an hemifusion diaphragm (HD) and subsequently open to a fusion pore. Although considered to be a key intermediate in fusion, direct experimental verification of this structure is difficult due to its transient nature. Using confocal fluorescence microscopy we have investigated the fusion of giant unilamellar vesicles (GUVs) containing phosphatidylserine and fluorescent virus derived transmembrane peptides or membrane proteins in the presence of divalent cations. Time-resolved imaging revealed that fusion was preceded by displacement of peptides and fluorescent lipid analogs from the GUV-GUV adhesion region. A detailed analysis of this area being several mum in size revealed that peptides were completely sequestered as expected for an HD. Lateral distribution of lipid analogs was consistent with formation of an HD but not with the presence of two adherent bilayers. Formation and size of the HD were dependent on lipid composition and peptide concentration.


Biochemical Journal | 2010

Subunit composition of an energy-coupling-factor-type biotin transporter analysed in living bacteria

Friedrich Finkenwirth; Olivia Neubauer; Julia Gunzenhäuser; Janna Schoknecht; Silvia Scolari; Martin Stöckl; Thomas Korte; Andreas Herrmann; Thomas Eitinger

BioMNY, a bacterial high-affinity biotin transporter, is a member of the recently defined class of ECF (energy-coupling factor) transporters. These systems are composed of ABC (ATP-binding-cassette) ATPases (represented by BioM in the case of the biotin transporter), a universally conserved transmembrane protein (BioN) and a core transporter component (BioY), in unknown stoichiometry. The quaternary structure of BioY, which functions as a low-affinity biotin transporter in the absence of BioMN, and of BioMNY was investigated by a FRET (Förster resonance energy transfer) approach using living recombinant Escherichia coli cells. To this end, the donor-acceptor pair, of Cerulean and yellow fluorescent protein respectively, were fused to BioM, BioN and BioY. The fusion proteins were stable and the protein tags did not interfere with transport and ATPase activities. Specific donor-acceptor interactions were characterized by lifetime-based FRET spectroscopy. The results suggest an oligomeric structure for the solitary BioY core transporter and oligomeric forms of BioM and BioY in BioMNY complexes. We surmise that oligomers of BioY are the functional units of the low- and high-affinity biotin transporter in the living cell. Beyond its relevance for clarifying the supramolecular organization of ECF transporters, the results demonstrate the general applicability of lifetime-based FRET studies in living bacteria.


Methods in Enzymology | 2012

Applications of fluorescence lifetime spectroscopy and imaging to lipid domains in vivo.

André E.P. Bastos; Silvia Scolari; Martin Stöckl; Rodrigo F.M. de Almeida

Lipid domains are part of the current description of cell membranes and their involvement in many fundamental cellular processes is currently acknowledged. However, their study in living cells is still a challenge. Fluorescence lifetimes have and will continue to play an important role in unraveling the properties and function of lipid domains, and their use in vivo is expected to increase in the near future, since their extreme sensitivity to the physical properties of the membrane and the possibility of optical imaging are particularly suited to deal with the hurdles that are met by researchers. In this review, a practical guide on the use of fluorescence lifetimes for the study of this subject is given. A section is devoted to studies in vitro, particularly membrane model systems, and how they are used to better design and correctly interpret results obtained in living cells. Criteria are presented for selecting suitable probes to solve each problem, drawing attention to factors sometimes overlooked and which may affect the fluorescence lifetime such as subcellular distribution and concentration of the probe. The principal groups of lifetime probes for lipid domains: (i) fluorescent lipid analogues, (ii) other lipophilic probes, and (iii) fluorescent proteins, and respective applications are briefly described and lab tips about the labeling of living cells are provided. The advantages and complementarities of spectroscopy (cuvette) work and fluorescence lifetime imaging microscopy are presented and illustrated with three selected case studies: (i) the finding of a new type of lipid rafts in yeast cells; (ii) the detection of liquid ordered type heterogeneity in animal cells below optical resolution; and (iii) establish a role for the transmembrane domain of influenza virus hemagglutinin with cholesterol-enriched domains in mammalian cells.

Collaboration


Dive into the Martin Stöckl's collaboration.

Top Co-Authors

Avatar

Andreas Herrmann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Pia Plazzo

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jörg Nikolaus

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Silvia Scolari

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Thomas Korte

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

D. Gebauer

University of Konstanz

View shared research outputs
Researchain Logo
Decentralizing Knowledge