Martin Trick
Norwich Research Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martin Trick.
Nature | 2012
Rachel Brenchley; Manuel Spannagl; Matthias Pfeifer; Gary L. A. Barker; Rosalinda D’Amore; Alexandra M. Allen; Neil McKenzie; Melissa Kramer; Arnaud Kerhornou; Dan Bolser; Suzanne Kay; Darren Waite; Martin Trick; Ian Bancroft; Yong Gu; Naxin Huo; Ming-Cheng Luo; Sunish K. Sehgal; Bikram S. Gill; Sharyar Kianian; Olin D. Anderson; Paul J. Kersey; Jan Dvorak; W. Richard McCombie; Anthony Hall; Klaus F. X. Mayer; Keith J. Edwards; Michael W. Bevan; Neil Hall
Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.
Nature Biotechnology | 2012
Andrea L. Harper; Martin Trick; Janet Higgins; Fiona Fraser; Leah Clissold; Rachel Wells; Chie Hattori; Peter Werner; Ian Bancroft
Association genetics can quickly and efficiently delineate regions of the genome that control traits and provide markers to accelerate breeding by marker-assisted selection. But most crops are polyploid, making it difficult to identify the required markers and to assemble a genome sequence to order those markers. To circumvent this difficulty, we developed associative transcriptomics, which uses transcriptome sequencing to identify and score molecular markers representing variation in both gene sequences and gene expression, and correlate this with trait variation. Applying the method in the recently formed tetraploid crop Brassica napus, we identified genomic deletions that underlie two quantitative trait loci for glucosinolate content of seeds. The deleted regions contained orthologs of the transcription factor HAG1 (At5g61420), which controls aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. This approach facilitates the application of association genetics in a broad range of crops, even those with complex genomes.
BMC Plant Biology | 2012
Martin Trick; Nikolai M. Adamski; Sarah G. Mugford; Cong-Cong Jiang; Melanie Febrer; Cristobal Uauy
BackgroundNext generation sequencing (NGS) technologies are providing new ways to accelerate fine-mapping and gene isolation in many species. To date, the majority of these efforts have focused on diploid organisms with readily available whole genome sequence information. In this study, as a proof of concept, we tested the use of NGS for SNP discovery in tetraploid wheat lines differing for the previously cloned grain protein content (GPC) gene GPC-B1. Bulked segregant analysis (BSA) was used to define a subset of putative SNPs within the candidate gene region, which were then used to fine-map GPC-B1.ResultsWe used Illumina paired end technology to sequence mRNA (RNAseq) from near isogenic lines differing across a ~30-cM interval including the GPC-B1 locus. After discriminating for SNPs between the two homoeologous wheat genomes and additional quality filtering, we identified inter-varietal SNPs in wheat unigenes between the parental lines. The relative frequency of these SNPs was examined by RNAseq in two bulked samples made up of homozygous recombinant lines differing for their GPC phenotype. SNPs that were enriched at least 3-fold in the corresponding pool (6.5% of all SNPs) were further evaluated. Marker assays were designed for a subset of the enriched SNPs and mapped using DNA from individuals of each bulk. Thirty nine new SNP markers, corresponding to 67% of the validated SNPs, mapped across a 12.2-cM interval including GPC-B1. This translated to 1 SNP marker per 0.31 cM defining the GPC-B1 gene to within 13-18 genes in syntenic cereal genomes and to a 0.4 cM interval in wheat.ConclusionsThis study exemplifies the use of RNAseq for SNP discovery in polyploid species and supports the use of BSA as an effective way to target SNPs to specific genetic intervals to fine-map genes in unsequenced genomes.
Nature Biotechnology | 2011
Ian Bancroft; Colin Morgan; Fiona Fraser; Janet Higgins; Rachel Wells; Leah Clissold; David Baker; Yan Long; Jinling Meng; Xiaowu Wang; Shengyi Liu; Martin Trick
Polyploidy complicates genomics-based breeding of many crops, including wheat, potato, cotton, oat and sugarcane. To address this challenge, we sequenced leaf transcriptomes across a mapping population of the polyploid crop oilseed rape (Brassica napus) and representative ancestors of the parents of the population. Analysis of sequence variation and transcript abundance enabled us to construct twin single nucleotide polymorphism linkage maps of B. napus, comprising 23,037 markers. We used these to align the B. napus genome with that of a related species, Arabidopsis thaliana, and to genome sequence assemblies of its progenitor species, Brassica rapa and Brassica oleracea. We also developed methods to detect genome rearrangements and track inheritance of genomic segments, including the outcome of an interspecific cross. By revealing the genetic consequences of breeding, cost-effective, high-resolution dissection of crop genomes by transcriptome sequencing will increase the efficiency of predictive breeding even in the absence of a complete genome sequence.
The Plant Cell | 2009
Foo Cheung; Martin Trick; Nizar Drou; Yong Pyo Lim; Jee-Young Park; Soo-Jin Kwon; Jin-A Kim; Rod J. Scott; J. Chris Pires; Andrew H. Paterson; Christopher D. Town; Ian Bancroft
Homoeologous regions of Brassica genomes were analyzed at the sequence level. These represent segments of the Brassica A genome as found in Brassica rapa and Brassica napus and the corresponding segments of the Brassica C genome as found in Brassica oleracea and B. napus. Analysis of synonymous base substitution rates within modeled genes revealed a relatively broad range of times (0.12 to 1.37 million years ago) since the divergence of orthologous genome segments as represented in B. napus and the diploid species. Similar, and consistent, ranges were also identified for single nucleotide polymorphism and insertion-deletion variation. Genes conserved across the Brassica genomes and the homoeologous segments of the genome of Arabidopsis thaliana showed almost perfect collinearity. Numerous examples of apparent transduplication of gene fragments, as previously reported in B. oleracea, were observed in B. rapa and B. napus, indicating that this phenomenon is widespread in Brassica species. In the majority of the regions studied, the C genome segments were expanded in size relative to their A genome counterparts. The considerable variation that we observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.
The Plant Cell | 2014
Andrew Breakspear; Chengwu Liu; Sonali Roy; Nicola Stacey; Christian Rogers; Martin Trick; Giulia Morieri; Kirankumar S. Mysore; Jiangqi Wen; Giles E. D. Oldroyd; J. Allan Downie; Jeremy D. Murray
Transcriptome profiling of M. truncatula root hairs during the initial stages of rhizobial infection helps to interpret two decades of research on Medicago and provides a foundation for future studies on host-symbiont interactions in the rhizosphere. Nitrogen-fixing rhizobia colonize legume roots via plant-made intracellular infection threads. Genetics has identified some genes involved but has not provided sufficient detail to understand requirements for infection thread development. Therefore, we transcriptionally profiled Medicago truncatula root hairs prior to and during the initial stages of infection. This revealed changes in the responses to plant hormones, most notably auxin, strigolactone, gibberellic acid, and brassinosteroids. Several auxin responsive genes, including the ortholog of Arabidopsis thaliana Auxin Response Factor 16, were induced at infection sites and in nodule primordia, and mutation of ARF16a reduced rhizobial infection. Associated with the induction of auxin signaling genes, there was increased expression of cell cycle genes including an A-type cyclin and a subunit of the anaphase promoting complex. There was also induction of several chalcone O-methyltransferases involved in the synthesis of an inducer of Sinorhizobium meliloti nod genes, as well as a gene associated with Nod factor degradation, suggesting both positive and negative feedback loops that control Nod factor levels during rhizobial infection. We conclude that the onset of infection is associated with reactivation of the cell cycle as well as increased expression of genes required for hormone and flavonoid biosynthesis and that the regulation of auxin signaling is necessary for initiation of rhizobial infection threads.
Molecular Genetics and Genomics | 1989
Martin Trick; Richard B. Flavell
SummaryThe sporophytic self-incompatibility system of Brassica species is controlled by a single locus, S. Recognition of self between pollen and stigma is probably mediated by S locus-specific glycoproteins (SLSGs). We describe the isolation, from an S29 homozygote of Brassica oleracea, of two different cDNA clones for transcripts which are equally abundant in stigmas competent for self-incompatibility and each of which is homologous to previously reported SLSG sequences. Extensive DNA sequence divergene between the two clones precludes their cross-hybridisation and each acts as a gene-specific probe. All S genotypes appear to have a single copy of each gene but there are significantly different levels of polymorphism associated with each. The clear structural homology between the two indicates a gene duplication involving the S locus and, perhaps, related to the evolution of self-incompatibility.
DNA Research | 2014
Feng Li; Biyun Chen; Kun Xu; Jinfeng Wu; Weilin Song; Ian Bancroft; Andrea L. Harper; Martin Trick; Shengyi Liu; Guizhen Gao; Nian Wang; Guixin Yan; Jiangwei Qiao; Jun Li; Hao Li; Xin Xiao; Tianyao Zhang; Xiaoming Wu
Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium® SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using ‘pseudomolecules’ representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed.
Theoretical and Applied Genetics | 2003
L. Tommasini; Jacqueline Batley; G M Arnold; R. J. Cooke; P. Donini; D. Lee; J. R. Law; C. Lowe; C. Moule; Martin Trick; Keith J. Edwards
Abstract.To assess the potential of multiplex SSR markers for testing distinctness, uniformity and stability of rape (Brassica napus L.) varieties, we developed three multiplex SSR sets composed of five markers each. These were used to measure the extent of diversity within and between a set of ten varieties using a fluorescence-based semi-automated detection technology. Also, we evaluated the significance of any correlation between SSRs, pedigree and five of the morphological characters currently used for statutory distinctness, uniformity and stability testing of rape varieties. An assignment test was allowed to identify 99% of the plants examined, with the correct variety based on the analysis of 48 individual plants for each variety. Principal coordinate analysis confirmed that a high degree of separation between varieties could be achieved. Varieties were separated in three groups corresponding to winter, spring and forage types. These results suggested that it should be possible to select a set of markers for obtaining a suitable separation. Diversity within varieties varied considerably, according to the variety and the locus examined. No significant correlation was found between SSR and morphological data. However, genetic distances measured by SSRs were correlated to pedigree. These results suggested that SSRs could be used for pre-screening or grouping of existing and candidate varieties, allowing the number of varieties that need to be grown for comparison to be reduced. Multiplex SSR sets gave high-throughput reproducible results, thus reducing the costs of SSR assessment. Multiplex SSR sets are a promising way forward for complementing the current variety testing system in B. napus.
Nature | 2014
Pedro Crevillen; Hongchun Yang; Xia Cui; Christiaan Greeff; Martin Trick; Qi Qiu; Xiaofeng Cao; Caroline Dean
The reprogramming of epigenetic states in gametes and embryos is essential for correct development in plants and mammals. In plants, the germ line arises from somatic tissues of the flower, necessitating the erasure of chromatin modifications that have accumulated at specific loci during development or in response to external stimuli. If this process occurs inefficiently, it can lead to epigenetic states being inherited from one generation to the next. However, in most cases, accumulated epigenetic modifications are efficiently erased before the next generation. An important example of epigenetic reprogramming in plants is the resetting of the expression of the floral repressor locus FLC in Arabidopsis thaliana. FLC is epigenetically silenced by prolonged cold in a process called vernalization. However, the locus is reactivated before the completion of seed development, ensuring the requirement for vernalization in every generation. In contrast to our detailed understanding of the polycomb-mediated epigenetic silencing induced by vernalization, little is known about the mechanism involved in the reactivation of FLC. Here we show that a hypomorphic mutation in the jumonji-domain-containing protein ELF6 impaired the reactivation of FLC in reproductive tissues, leading to the inheritance of a partially vernalized state. ELF6 has H3K27me3 demethylase activity, and the mutation reduced this enzymatic activity in planta. Consistent with this, in the next generation of mutant plants, H3K27me3 levels at the FLC locus stayed higher, and FLC expression remained lower, than in the wild type. Our data reveal an ancient role for H3K27 demethylation in the reprogramming of epigenetic states in plant and mammalian embryos.