Peter Werner
University of Hertfordshire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Werner.
Proceedings of the National Academy of Sciences of the United States of America | 2010
James Cockram; Jon White; Diana L. Zuluaga; David C. Smith; Jordi Comadran; Malcolm Macaulay; Zewei Luo; M J Kearsey; Peter Werner; D. Harrap; Chris Tapsell; Hui Liu; Peter E. Hedley; Nils Stein; Daniela Schulte; Burkhard Steuernagel; David Marshall; W. T. B. Thomas; Luke Ramsay; Ian Mackay; David J. Balding; Robbie Waugh; Donal M. O'Sullivan
Although commonplace in human disease genetics, genome-wide association (GWA) studies have only relatively recently been applied to plants. Using 32 phenotypes in the inbreeding crop barley, we report GWA mapping of 15 morphological traits across ∼500 cultivars genotyped with 1,536 SNPs. In contrast to the majority of human GWA studies, we observe high levels of linkage disequilibrium within and between chromosomes. Despite this, GWA analysis readily detected common alleles of high penetrance. To investigate the potential of combining GWA mapping with comparative analysis to resolve traits to candidate polymorphism level in unsequenced genomes, we fine-mapped a selected phenotype (anthocyanin pigmentation) within a 140-kb interval containing three genes. Of these, resequencing the putative anthocyanin pathway gene HvbHLH1 identified a deletion resulting in a premature stop codon upstream of the basic helix-loop-helix domain, which was diagnostic for lack of anthocyanin in our association and biparental mapping populations. The methodology described here is transferable to species with limited genomic resources, providing a paradigm for reducing the threshold of map-based cloning in unsequenced crops.
Nature Biotechnology | 2012
Andrea L. Harper; Martin Trick; Janet Higgins; Fiona Fraser; Leah Clissold; Rachel Wells; Chie Hattori; Peter Werner; Ian Bancroft
Association genetics can quickly and efficiently delineate regions of the genome that control traits and provide markers to accelerate breeding by marker-assisted selection. But most crops are polyploid, making it difficult to identify the required markers and to assemble a genome sequence to order those markers. To circumvent this difficulty, we developed associative transcriptomics, which uses transcriptome sequencing to identify and score molecular markers representing variation in both gene sequences and gene expression, and correlate this with trait variation. Applying the method in the recently formed tetraploid crop Brassica napus, we identified genomic deletions that underlie two quantitative trait loci for glucosinolate content of seeds. The deleted regions contained orthologs of the transcription factor HAG1 (At5g61420), which controls aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. This approach facilitates the application of association genetics in a broad range of crops, even those with complex genomes.
Plant Biotechnology Journal | 2013
Alexandra M. Allen; Gary L. A. Barker; Paul A. Wilkinson; Amanda J. Burridge; Mark O. Winfield; Jane A. Coghill; Cristobal Uauy; Simon Griffiths; Peter Jack; Simon Berry; Peter Werner; James P. E. Melichar; Jane McDougall; Rhian Gwilliam; Phil Robinson; Keith J. Edwards
Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)-based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP-based wheat markers have been made available via the use of next-generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial-scale breeding programmes. To identify exome-based co-dominant SNP-based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re-sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95xa0266 putative single nucleotide polymorphisms, of which 10xa0251 were classified as being putatively co-dominant. Validation of a subset of these putative co-dominant markers confirmed that 96% were true polymorphisms and 65% were co-dominant SNP assays. The new co-dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web-based database to facilitate their use on genotyping programmes worldwide.
Plant Biotechnology Journal | 2012
Sabine Mameaux; James Cockram; Thomas Thiel; Burkhard Steuernagel; Nils Stein; Peter Jack; Peter Werner; John C. Gray; Andy Greenland; W. Powell
The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae.
Molecular Breeding | 2014
Rachel Wells; Martin Trick; Eleni Soumpourou; Leah Clissold; Colin Morgan; Peter Werner; Carl Gibbard; Matthew Clarke; Richard Jennaway; Ian Bancroft
Many important plant species have polyploidy in their recent ancestry, complicating inferences about the genetic basis of trait variation. Although the principal locus controlling the proportion of polyunsaturated fatty acids (PUFAs) in seeds of Arabidopsis thaliana is known (fatty acid desaturase 2; FAD2), commercial cultivars of a related crop, oilseed rape (Brassica napus), with very low PUFA content have yet to be developed. We showed that a cultivar of oilseed rape with lower than usual PUFA content has non-functional alleles at three of the four orthologous FAD2 loci. To explore the genetic basis further, we developed an ethyl methanesulphonate mutagenised population, JBnaCAB_E, and used it to identify lines that also carried mutations in the remaining functional copy. This confirmed the hypothesised basis of variation, resulting in an allelic series of mutant lines showing a spectrum of PUFA contents of seed oil. Several lines had PUFA content of ~6xa0% and oleic acid content of ~84xa0%, achieving a long-standing industry objective: very high oleic, very low PUFA rapeseed without the use of genetic modification technology. The population contains a high rate of mutations and represents an important resource for research in B. napus.
Functional Plant Biology | 2014
Eric S. Ober; Peter Werner; Edward Flatman; William J. Angus; Peter Jack; Lucy Smith-Reeve; Chris Tapsell
The ability of roots to extract soil moisture is critical for maintaining yields during drought. However, the extent of genotypic variation for rooting depth and drought tolerance in Northern European wheat (Triticum aestivum L.) germplasm is not known. The objectives of this study were to measure genotypic differences in root activity, test relationships between water use and yield, examine trade-offs between yield potential and investment of biomass in deep roots, and identify genotypes that contrast in deep root activity. A diverse set of 21 wheat genotypes was evaluated under irrigated and managed drought conditions in the field. Root activity was inferred from patterns of water extraction from the soil profile. Genotypes were equally capable of exploiting soil moisture in the upper layers, but there were significant genotypic differences in rates of water uptake after anthesis in deeper soil layers. For example, across the three years of the study, the variety Xi19 showed consistently deeper root activity than the variety Spark; Xi19 also showed greater drought tolerance than Spark. There were positive correlations between water extraction from depth and droughted yields and drought tolerance, but correlations between deep water use and yield potential were not significant or only weakly negative. With appropriate screening tools, selection for genotypes that can better mine deep soil water should improve yield stability in variable rainfall environments.
Journal of Experimental Botany | 2016
Oluwaseyi Shorinola; Nicholas Bird; James Simmonds; Simon Berry; Tina Henriksson; Peter Jack; Peter Werner; Tanja Gerjets; Duncan Scholefield; Barbara Balcárková; Miroslav Valárik; Michael J. Holdsworth; John E. Flintham; Cristobal Uauy
Highlight Phs-A1 confers resistance to sprouting in wheat by delaying the rate of seed dormancy loss and is distinct from the previously proposed PM19 candidate genes.
Molecular Breeding | 2013
A. D. Farrell; P. S. Kettlewell; James Simmonds; J. E. Flintham; J. W. Snape; Peter Werner; P. L. Jack
The occurrence of late maturity alpha-amylase (LMA) was investigated using two doubled haploid wheat populations segregating for the dwarfing gene Rht-D1b and the 1B/1R translocation. Genotypes were assessed in the field and in controlled environments where a cold-shock treatment was used to induce LMA. Results from field-grown genotypes from the cross Sparkxa0×xa0Rialto suggest that the absence of Rht-D1b or the presence of the 1B/1R translocation increases the expression of LMA.These two genetic factors were found to act independently and to have a positive interaction (complementary epistasis). In Optionxa0×xa0Potent genotypes fixed for Rht-D1b, the 1B/1R effect was similar to that seen in the equivalent Sparkxa0×xa0Rialto genotypes. Under controlled environment conditions, genotypes with the 1B/1R translocation showed a higher occurrence of LMA under both control and cold-shock conditions.xa01B/1R was present in the majority of genotypes expressing LMA under control and cold-shock conditions. The results point to the novel finding that the 1B/1R translocation increases the expression of alpha-amylase in LMA-prone germplasm independently of effects of Rht-D1b, whereas previously it had been thought to act by a modification of the Rht-D1b effect.
BMC Genomics | 2016
Charlotte N. Miller; Andrea L. Harper; Martin Trick; Peter Werner; Keith W. Waldron; Ian Bancroft
BackgroundThe current approach to reducing the tendency for wheat grown under high fertilizer conditions to collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes. However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the improvement of stem mechanical strength provides a further way through which lodging can be reduced.ResultsTo investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066 Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions.ConclusionsThis work illustrates the power of Associative Transcriptomics for the exploration of complex traits of high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled with the more traditional sequence-based markers, provides the power required to understand the biological context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to accumulate regarding gene function and plant adaptation, but also provides breeders with the information required to make more informed decisions regarding the potential consequences of incorporating the use of particular markers into future breeding programmes.
Molecular Breeding | 2018
Charlotte N. Miller; Andrea L. Harper; Martin Trick; Nikolaus Wellner; Peter Werner; Keith W. Waldron; Ian Bancroft
Lodging continues to be a major cause of yield loss in important crop species such as Brassica napus. Understanding the genetic regulation of lodging resistance is therefore of key interest to breeders worldwide. Current strategies aimed at minimising lodging risk involve the incorporation of dwarfing genes or the application of plant growth regulators. However, despite these efforts, lodging continues to be a persistent problem and it is therefore of high interest that novel, complimentary strategies for lodging control are implemented. One approach would be to focus on understanding the genetic properties underlying stem mechanical strength. With this in mind, we screened a training genetic diversity panel of B. napus accession for variation in stem mechanical strength and related traits. Using Associative Transcriptomics, we identified molecular markers for a suite of valuable traits. Using an independent test genetic diversity panel, we show that the methods employed are robust for identification of predictive markers. Furthermore, based on conserved synteny with Arabidopsis thaliana, we are able to provide a biological context to the marker associations detected and provide evidence for a role in pectin methylesterification in contributing to stem mechanical strength in Brassicaceae.