Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin Twiste is active.

Publication


Featured researches published by Martin Twiste.


Clinical Biomechanics | 2014

The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait

Matthew J. Major; Martin Twiste; Laurence Kenney; David Howard

BACKGROUND Previous studies of commercially-available trans-tibial prosthetic components have been unable to provide clear insight into the relationships between prosthetic mechanical properties and user performance (i.e., gait quality and energy expenditure), the understanding of which is key to improving prosthesis design and prescription. Many of these studies have been limited by not characterising the mechanical properties of the tested prostheses and/or only considered level walking at self-selected speeds. The aim of this study was to conduct a systematic investigation of the effects of ankle rotational stiffness on trans-tibial amputee gait during various walking conditions reflective of those encountered during daily ambulation. METHODS Ankle and knee kinematics, prosthetic limb normal ground reaction forces, and net metabolic cost were measured in five traumatic unilateral trans-tibial amputees during treadmill walking on the level, a 5% incline and a 5% decline whilst using an experimental articulated prosthetic foot with four different rotational stiffness setups and without changes in alignment between conditions. FINDINGS Overall, lower dorsiflexion stiffness resulted in greater prosthetic side dorsiflexion motion and sound side knee flexion, reduced normal ground reaction force during the loading phase of prosthetic stance and reduced net metabolic cost. INTERPRETATION Few differences were observed with changes in plantarflexion stiffness, most likely due to the foot achieving early foot flat. Low dorsiflexion stiffness generally improved gait performance seemingly due to easier tibial progression during stance. However, observed differences were small, suggesting that a wider range of walking and stiffness conditions would be useful to fully explore these effects in future studies.


Journal of Biomechanics | 2011

Amputee independent prosthesis properties - a new model for description and measurement

Matthew J. Major; Martin Twiste; Laurence Kenney; David Howard

A model is presented for describing the Amputee Independent Prosthesis Properties (AIPP) of complete assemblies of trans-tibial prosthetic components distal to the socket. This new AIPP model includes features of both lumped parameter and roll-over models and describes prosthesis properties that are of importance in stance phase, including prosthetic foot geometry, normal stiffness, shear stiffness, and damping (energy dissipation). Methods are described for measuring the parameters of the AIPP model using a custom test-rig, commercial load-cell, and a motion capture system. Example data are presented for five pylon angles reflecting the shank angles seen in normal gait. Through the inclusion of measured AIPP in future in-vivo studies comparing different prostheses more generic information, as opposed to product specific claims, will become more widely available to inform future designs, prescription, and alignment procedures.


Journal of Rehabilitation Research and Development | 2003

Transverse rotation and longitudinal translation during prosthetic gait - a literature review

Martin Twiste; Shyam Rithalia

Improved technology allows for more accurate gait analysis to increase awareness of nonoptimized prosthetic gait patterns and for the manufacture of sophisticated prosthetic components to improve nonoptimized gait patterns. However, prescriptions are often based on intuition rather than rigorous research findings for evidence-based practice. The number of studies found in the literature that are based on prosthetic research regarding transverse rotation and longitudinal translation is small when compared to topics regarding other types of movements. Some design criteria for prosthetic components described in those studies that permit transverse rotation and longitudinal translation can be found in current designs. However, little research has been conducted to establish their effectiveness on the gait parameters and residual limb. This literature review is an investigation into these motions between the socket and the prosthetic foot, with particular reference to gait characteristics and prosthetic design criteria.


Journal of Rehabilitation Research and Development | 2012

Stance phase mechanical characterization of transtibial prostheses distal to the socket: A review

Matthew J. Major; Laurence Kenney; Martin Twiste; David Howard

Achieving the required functionality of a transtibial prosthesis during the stance phase of gait (e.g., shock absorption, close to normal roll-over characteristics, and smooth transition into swing) depends on the Amputee Independent Prosthesis Properties (AIPPs), defined here as the mechanical properties of the prosthesis that directly influence the performance of the amputee. Accordingly, if research studies are to advance the design of prostheses to achieve improved user performance, AIPPs must be a primary consideration. However, the majority of reported studies can be categorized as either human performance testing of commercial prosthetic components or AIPP characterization; only in a few notable cases have studies combined these two approaches. Moreover, very little consistency exists in the current methods used for AIPP characterization, thus making comparisons between the results of such studies very difficult. This article introduces a framework for studying prosthesis design, which includes AIPP characterization, human performance and/or gait simulation studies, and detailed design. This framework provides a structure for reviewing previous approaches to AIPP characterization, discussing both their merits and shortcomings and their use in previous experimental and simulation studies. For the purposes of this review, stance phase AIPP models have been categorized as either lumped parameter or roll-over shape based.


Archives of Physical Medicine and Rehabilitation | 2017

Temporal spatial and metabolic measures of walking in highly functional individuals with lower limb amputations

Hannah L. Jarvis; Alexander N. Bennett; Martin Twiste; Rhodri Phillip; John Etherington; Richard Baker

OBJECTIVE To record the temporal spatial parameters and metabolic energy expenditure during walking of individuals with amputation, walking with advanced prostheses, and after completion of comprehensive rehabilitation compared with able-bodied persons. DESIGN Cross-sectional. SETTING Multidisciplinary comprehensive rehabilitation center. PARTICIPANTS Severely injured UK military personnel with amputation and subsequent completion of their rehabilitation program (n=30; unilateral transtibial: n=10, unilateral transfemoral: n=10, and bilateral transfemoral: n=10) were compared with able-bodied persons (n=10) with similar age, height, and mass (P>.537). Total number of participants (N = 40). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Temporal spatial and metabolic energy expenditure data were captured during walking on level ground at a self-selected speed. RESULTS The individuals with amputation were all men, with a mean age of 29±4 years and a mean New Injury Severity Score of 31±16. Walking speed, stride length, step length, and cadence of individuals with a unilateral transtibial or transfemoral amputation were comparable with able-bodied persons, and only individuals with a bilateral transfemoral amputation had a significantly slower walking speed (1.12m/s, P=.025) and reduced cadence (96 steps per minute, P=.026). Oxygen cost for individuals with a unilateral transtibial amputation (0.15mL/kg/m) was the same as for able-bodied persons (0.15mL/kg/m) and significantly increased by 20% (0.18mL/kg/m, P=.023) for unilateral transfemoral amputation and by 60% (0.24mL/kg/m, P<.001) for bilateral transfemoral individuals with amputation. CONCLUSIONS The scientific literature reports a wide range of gait and metabolic energy expenditure across individuals with amputation. The results of this study indicate that individuals with amputation have a gait pattern which is highly functional and efficient. This is comparable with a small number of studies reporting similar outcomes for individuals with a unilateral transtibial amputation, but the results from this study are better than those on individuals with transfemoral amputations reported elsewhere, despite comparison with populations wearing similar prosthetic componentry. Those studies that do report similar outcomes have included individuals who have been provided with a comprehensive rehabilitation program. This suggests that such a program may be as important as, or even more important than, prosthetic component selection in improving metabolic energy expenditure. The data are made available as a benchmark for what is achievable in the rehabilitation of some individuals with amputations, but agreeably may not be possible for all amputees to achieve.


Prosthetics and Orthotics International | 2014

Validation of the activPAL activity monitor in children with hemiplegic gait patterns resultant from cerebral palsy

Mark T McAloon; Stephen W Hutchins; Martin Twiste; Richard Jones; Simone Forchtner

Background: Current investigation of treatment outcomes by clinicians is currently hampered by a lack of clinically viable tools. The use of activity monitors specifically validated for a population could help resolve this situation. Objectives: The purpose of the study was to validate an activity monitor for monitoring children with cerebral palsy. The study was designed to validate the duration of time spent sitting, standing and walking and the number of steps taken when being measured by the activPAL activity monitor. Study design: A validation study was undertaken. Methods: Observations of participants were carried out while completing a specifically designed activity course using video footage, which were then compared to the output from the activity monitor. Results: The activity monitor was found to be valid for the time spent standing and walking, the number of steps taken and the number of transitions. Conclusions: The results demonstrated that the monitor may prove useful to clinicians as a measurement outcome device for children with hemiplegic gait patterns resultant from cerebral palsy. However, the sensitivity of the device is variable, and further investigations are necessary to confirm it would also be able to detect minor changes after interventions. Clinical relevance The monitor may provide clinicians with a simplistic tool that is easily utilised, to enable audit exercises of current and future treatments.


Journal of Rehabilitation Research and Development | 2016

The effects of prosthetic ankle stiffness on stability of gait in people with transtibial amputation

Matthew J. Major; Martin Twiste; Laurence Kenney; David Howard

The ability to control balance during walking is a critical precondition for minimizing fall risk, but this ability is compromised in persons with lower-limb absence because of reduced sensory feedback mechanisms and inability to actively modulate prosthesis mechanical function. Consequently, these individuals are at increased fall risk compared with nondisabled individuals. A number of gait parameters, including symmetry and temporal variability in step/stride characteristics, have been used as estimates of gait stability and fall risk. This study investigated the effect of prosthetic ankle rotational stiffness on gait parameters related to walking stability of transtibial prosthesis users. Five men walked with an experimental prosthesis that allowed for independent modulation of plantar flexion and dorsiflexion stiffness. Two levels of plantar flexion and dorsiflexion stiffness were tested during level, uphill, and downhill walking. The results demonstrate that low plantar flexion stiffness reduced time to foot-flat, and this was associated with increased perceived stability, while low dorsiflexion stiffness demonstrated trends in temporal-spatial parameters that are associated with improved gait stability (reduced variability and asymmetry). Prosthesis design and prescription for low rotational stiffness may enhance gait safety for transtibial prosthesis users at risk of unsteadiness and falls.


Journal of X-ray Science and Technology | 2014

A systematic procedure to optimise dose and image quality for the measurement of inter-vertebral angles from lateral spinal projections using Cobb and superimposition methods

Bashar Sa'ed Al Qaroot; Peter Hogg; Martin Twiste; David Howard

BACKGROUND Patients with vertebral column deformations are exposed to high risks associated with ionising radiation exposure. Risks are further increased due to the serial X-ray images that are needed to measure and asses their spinal deformation using Cobb or superimposition methods. Therefore, optimising such X-ray practice, via reducing dose whilst maintaining image quality, is a necessity. OBJECTIVES With a specific focus on lateral thoraco-lumbar images for Cobb and superimposition measurements, this paper outlines a systematic procedure to the optimisation of X-ray practice. METHODS Optimisation was conducted based on suitable image quality from minimal dose. Image quality was appraised using a visual-analogue-rating-scale, and Monte-Carlo modelling was used for dose estimation. The optimised X-ray practice was identified by imaging healthy normal-weight male adult living human volunteers. RESULTS The optimised practice consisted of: anode towards the head, broad focus, no OID or grid, 80 kVp, 32 mAs and 130 cm SID. CONCLUSION Images of suitable quality for laterally assessing spinal conditions using Cobb or superimposition measurements were produced from an effective dose of 0.05 mSv, which is 83% less than the average effective dose used in the UK for lateral thoracic/lumbar exposures. This optimisation procedure can be adopted and use for optimisation of other radiographic techniques.


Gait & Posture | 2017

Medial-lateral centre of mass displacement and base of support are equally good predictors of metabolic cost in amputee walking

R.A. Weinert-Aplin; Martin Twiste; Hannah L. Jarvis; Alexander N. Bennett; Richard Baker

Amputees are known to walk with greater metabolic cost than able-bodied individuals and establishing predictors of metabolic cost from kinematic measures, such as centre of mass (CoM) motion, during walking are important from a rehabilitative perspective, as they can provide quantifiable measures to target during gait rehabilitation in amputees. While it is known that vertical CoM motion poorly predicts metabolic cost, CoM motion in the medial-lateral (ML) and anterior-posterior directions have not been investigated in the context of gait efficiency in the amputee population. Therefore, the aims of this study were to investigate the relationship between CoM motion in all three directions of motion, base of support and walking speed, and the metabolic cost of walking in both able-bodied individuals and different levels of lower limb amputee. 37 individuals were recruited to form groups of controls, unilateral above- and below-knee, and bilateral above-knee amputees respectively. Full-body optical motion and oxygen consumption data were collected during walking at a self-selected speed. CoM position was taken as the mass-weighted average of all body segments and compared to each individuals net non-dimensional metabolic cost. Base of support and ML CoM displacement were the strongest correlates to metabolic cost and the positive correlations suggest increased ML CoM displacement or Base of support will reduce walking efficiency. Rehabilitation protocols which indirectly reduce these indicators, rather than vertical CoM displacement will likely show improvements in amputee walking efficiency.


PLOS ONE | 2017

Validity and reliability of a novel 3D scanner for assessment of the shape and volume of amputees’ residual limb models

Elena Seminati; David Alberto Canepa Talamas; Matthew Young; Martin Twiste; Vimal Dhokia; James Bilzon

Background Objective assessment methods to monitor residual limb volume following lower-limb amputation are required to enhance practitioner-led prosthetic fitting. Computer aided systems, including 3D scanners, present numerous advantages and the recent Artec Eva scanner, based on laser free technology, could potentially be an effective solution for monitoring residual limb volumes. Purpose The aim of this study was to assess the validity and reliability of the Artec Eva scanner (practical measurement) against a high precision laser 3D scanner (criterion measurement) for the determination of residual limb model shape and volume. Methods Three observers completed three repeat assessments of ten residual limb models, using both the scanners. Validity of the Artec Eva scanner was assessed (mean percentage error <2%) and Bland-Altman statistics were adopted to assess the agreement between the two scanners. Intra and inter-rater reliability (repeatability coefficient <5%) of the Artec Eva scanner was calculated for measuring indices of residual limb model volume and shape (i.e. residual limb cross sectional areas and perimeters). Results Residual limb model volumes ranged from 885 to 4399 ml. Mean percentage error of the Artec Eva scanner (validity) was 1.4% of the criterion volumes. Correlation coefficients between the Artec Eva and the Romer determined variables were higher than 0.9. Volume intra-rater and inter-rater reliability coefficients were 0.5% and 0.7%, respectively. Shape percentage maximal error was 2% at the distal end of the residual limb, with intra-rater reliability coefficients presenting the lowest errors (0.2%), both for cross sectional areas and perimeters of the residual limb models. Conclusion The Artec Eva scanner is a valid and reliable method for assessing residual limb model shapes and volumes. While the method needs to be tested on human residual limbs and the results compared with the current system used in clinical practice, it has the potential to quantify shape and volume fluctuations with greater resolution.

Collaboration


Dive into the Martin Twiste's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge