Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin V. Sørensen is active.

Publication


Featured researches published by Martin V. Sørensen.


Nature | 2008

Broad phylogenomic sampling improves resolution of the animal tree of life.

Casey W. Dunn; Andreas Hejnol; David Q. Matus; Kevin Pang; William E. Browne; Stephen A. Smith; Elaine C. Seaver; Greg W. Rouse; Matthias Obst; Gregory D. Edgecombe; Martin V. Sørensen; Steven H. D. Haddock; Andreas Schmidt-Rhaesa; Akiko Okusu; Reinhardt Møbjerg Kristensen; Ward C. Wheeler; Mark Q. Martindale; Gonzalo Giribet

Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many relationships remain disputed, including those that are required to polarize key features of character evolution, and support for deep nodes is often low. Phylogenomic approaches, which use data from many genes, have shown promise for resolving deep animal relationships, but are hindered by a lack of data from many important groups. Here we report a total of 39.9 Mb of expressed sequence tags from 29 animals belonging to 21 phyla, including 11 phyla previously lacking genomic or expressed-sequence-tag data. Analysed in combination with existing sequences, our data reinforce several previously identified clades that split deeply in the animal tree (including Protostomia, Ecdysozoa and Lophotrochozoa), unambiguously resolve multiple long-standing issues for which there was strong conflicting support in earlier studies with less data (such as velvet worms rather than tardigrades as the sister group of arthropods), and provide molecular support for the monophyly of molluscs, a group long recognized by morphologists. In addition, we find strong support for several new hypotheses. These include a clade that unites annelids (including sipunculans and echiurans) with nemerteans, phoronids and brachiopods, molluscs as sister to that assemblage, and the placement of ctenophores as the earliest diverging extant multicellular animals. A single origin of spiral cleavage (with subsequent losses) is inferred from well-supported nodes. Many relationships between a stable subset of taxa find strong support, and a diminishing number of lineages remain recalcitrant to placement on the tree.


Organisms Diversity & Evolution | 2011

Higher-level metazoan relationships: recent progress and remaining questions

Gregory D. Edgecombe; Gonzalo Giribet; Casey W. Dunn; Andreas Hejnol; Reinhardt Møbjerg Kristensen; Ricardo Cardoso Neves; Greg W. Rouse; Katrine Worsaae; Martin V. Sørensen

Metazoa comprises 35–40 phyla that include some 1.3 million described species. Phylogenetic analyses of metazoan interrelationships have progressed in the past two decades from those based on morphology and/or targeted-gene approaches using single and then multiple loci to the more recent phylogenomic approaches that use hundreds or thousands of genes from genome and transcriptome sequencing projects. A stable core of the tree for bilaterian animals is now at hand, and instability and conflict are becoming restricted to a key set of important but contentious relationships. Acoelomorph flatworms (Acoela + Nemertodermatida) and Xenoturbella are sister groups. The position of this clade remains controversial, with different analyses supporting either a sister-group relation to other bilaterians (=Nephrozoa, composed of Protostomia and Deuterostomia) or membership in Deuterostomia. The main clades of deuterostomes (Ambulacraria and Chordata) and protostomes (Ecdysozoa and Spiralia) are recovered in numerous analyses based on varied molecular samples, and also receive anatomical and developmental support. Outstanding issues in protostome phylogenetics are the position of Chaetognatha within the protostome clade, and the monophyly of a group of spiralians collectively named Platyzoa. In contrast to the broad consensus over key questions in bilaterian phylogeny, the relationships of the five main metazoan lineages—Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria—remain subject to conflicting topologies according to different taxonomic samples and analytical approaches. Whether deep bilaterian divergences such as the split between protostome and deuterostome clades date to the Cryogenian or Ediacaran (and, thus, the extent to which the pre-Cambrian fossil record is incomplete) is sensitive to dating methodology.


Systematic Biology | 2009

Radiation of Extant Cetaceans Driven by Restructuring of the Oceans

Mette E. Steeman; Martin B. Hebsgaard; R. Ewan Fordyce; Simon Y. W. Ho; Daniel L. Rabosky; Rasmus Nielsen; Carsten Rahbek; Henrik Glenner; Martin V. Sørensen

Abstract The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36–34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18–16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans.


Cladistics | 2004

Investigations into the phylogenetic position of Micrognathozoa using four molecular loci

Gonzalo Giribet; Martin V. Sørensen; Peter Funch; Reinhardt Møbjerg Kristensen; Wolfgang Sterrer

Micrognathozoa is the most recently discovered higher metazoan lineage. The sole known species of the group, Limnognathia maerski, was originally reported from running freshwater in Disko Island (Greenland), and has recently been recorded from the subantarctic region. Because of the presence of a particular type of jaws formed of special cuticularized rods, similar to those of gnathostomulids and rotifers, the three metazoan lineages were considered closely related, and assigned to the clade Gnathifera. A phylogenetic comparison of four molecular loci for Limnognathia maerski and other newly generated sequences of mainly acoelomate animals showed that Micrognathozoa may constitute an independent lineage from those of Gnathostomulida and Rotifera. However, the exact position of Micrognathozoa could not be determined due to the lack of support for any given relationships and due to the lack of stability in the position of Limnognathia maerski under analysis of different loci and of different parameter sets for sequence comparison. Nuclear loci tend to place Micrognathozoa with the syndermatan/cycliophoran taxa, but the addition of the mitochondrial gene cytochrome c oxidase subunit I favors a relationship of Micrognathozoa to Entoprocta.


Marine Biodiversity | 2015

Is the meiofauna a good indicator for climate change and anthropogenic impacts

Daniela Zeppilli; Jozée Sarrazin; Daniel Leduc; Pedro Martínez Arbizu; Diego Fontaneto; Christophe Fontanier; Andrew J. Gooday; Reinhardt Møbjerg Kristensen; Viatcheslav N. Ivanenko; Martin V. Sørensen; Ann Vanreusel; Julien Thébault; Marianna Mea; Noemie Allio; Thomas Andro; Alexandre Arvigo; Jean-Xavier Castrec; Morgan Danielo; Valentin Foulon; Raphaelle Fumeron; Ludovic Hermabessiere; Vivien Hulot; Tristan James; Roxanne Langonne-Augen; Tangi Le Bot; Marc Long; Dendy Mahabror; Quentin Morel; Michael Pantalos; Etienne Pouplard

Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research.


PLOS ONE | 2015

Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci

Martin V. Sørensen; Matteo Dal Zotto; Hyun Soo Rho; María Ángeles Herranz; Nuria Sánchez; Fernando Pardos; Hiroshi Yamasaki

The phylogeny of Kinorhyncha was analyzed using morphology and the molecular loci 18S rRNA and 28S rRNA. The different datasets were analyzed separately and in combination, using maximum likelihood and Bayesian Inference. Bayesian inference of molecular sequence data in combination with morphology supported the division of Kinorhyncha into two major clades: Cyclorhagida comb. nov. and Allomalorhagida nom. nov. The latter clade represents a new kinorhynch class, and accommodates Dracoderes, Franciscideres, a yet undescribed genus which is closely related with Franciscideres, and the traditional homalorhagid genera. Homalorhagid monophyly was not supported by any analyses with molecular sequence data included. Analysis of the combined molecular and morphological data furthermore supported a cyclorhagid clade which included all traditional cyclorhagid taxa, except Dracoderes that no longer should be considered a cyclorhagid genus. Accordingly, Cyclorhagida is divided into three main lineages: Echinoderidae, Campyloderidae, and a large clade, ‘Kentrorhagata’, which except for species of Campyloderes, includes all species with a midterminal spine present in adult individuals. Maximum likelihood analysis of the combined datasets produced a rather unresolved tree that was not regarded in the following discussion. Results of the analyses with only molecular sequence data included were incongruent at different points. However, common for all analyses was the support of several major clades, i.e., Campyloderidae, Kentrorhagata, Echinoderidae, Dracoderidae, Pycnophyidae, and a clade with Paracentrophyes + New Genus and Franciscideres (in those analyses where the latter was included). All molecular analyses including 18S rRNA sequence data furthermore supported monophyly of Allomalorhagida. Cyclorhagid monophyly was only supported in analyses of combined 18S rRNA and 28S rRNA (both ML and BI), and only in a restricted dataset where taxa with incomplete information from 28S rRNA had been omitted. Analysis of the morphological data produced results that were similar with those from the combined molecular and morphological analysis. E.g., the morphological data also supported exclusion of Dracoderes from Cyclorhagida. The main differences between the morphological analysis and analyses based on the combined datasets include: 1) Homalorhagida appears as monophyletic in the morphological tree only, 2) the morphological analyses position Franciscideres and the new genus within Cyclorhagida near Zelinkaderidae and Cateriidae, whereas analyses including molecular data place the two genera inside Allomalorhagida, and 3) species of Campyloderes appear in a basal trichotomy within Kentrorhagata in the morphological tree, whereas analysis of the combined datasets places species of Campyloderes as a sister clade to Echinoderidae and Kentrorhagata.


Helgoland Marine Research | 2007

Tubulideres seminoli gen. et sp. nov. and Zelinkaderes brightae sp. nov. (Kinorhyncha, Cyclorhagida) from Florida

Martin V. Sørensen; Iben Heiner; Ole Ziemer; Birger Neuhaus

One new kinorhynch genus and species and one new species from the genus Zelinkaderes are described from sandy sediment off Fort Pierce, Florida. The new genus and species, Tubulideres seminoli gen. et sp. nov. is characterized by the presence of the first trunk segment consisting of a closed ring, the second segment of a bent tergal plate with a midventral articulation and the following nine segments consisting of a tergal and two sternal plates. Cuspidate spines are not present, but flexible tubules are located on several segments, and in particular concentrated on the ventral side of the second segment. Middorsal spines are present on all trunk segments and are alternatingly offset to a position slightly lateral to the middorsal line. Zelinkaderes brightae nov. sp. is characterized by its spine formula in having middorsal spines on trunk segments 4, 6 and 8–11, lateroventral acicular spines on segment 2, lateral accessory cuspidate spines on segments 2 and 8, ventrolateral cuspidate spines on segments 4–6 and 9, lateroventral acicular spines present on segments 8 and 9, and midterminal, lateral terminal and lateral terminal accessory spines on segment 11. The spine formula of Z. brightae nov. sp. places it in a position in between Z. submersus and a clade consisting of Z. klepali and Z. floridensis. The new findings on Z. brightae nov. sp. have led us to propose an emended diagnosis for the genus.


Zoomorphology | 2005

Musculature in three species of Proales (Monogononta, Rotifera) stained with phalloidin-labeled fluorescent dye

Martin V. Sørensen

The musculature in the rotifer species Proales daphnicola, P. reinhardti and P. fallaciosa was stained with phalloidin-labeled fluorescent dye and compared using confocal laser scanning microscopy. All three species share several homologous muscle systems, but each system’s detailed morphology varies among the species both concerning appearance, number and location. The obtained results were compared with data from other rotifers and it was concluded that the muscles pars coronalis and the corona sphincter probably represent conditions in Ploima or Monogononta, while incomplete circular muscles and dorsal and ventral trunk retractors might be part of the eurotatorian ground pattern.


Hydrobiologia | 2005

On the Phylogenetic Position of Rotifera – Have We Come Any Further?

Peter Funch; Martin V. Sørensen; Matthias Obst

Rotifers are bilateral symmetric animals belonging to Protostomia. The ultrastructure of the rotiferan trophi suggests that they belong to the Gnathifera, and ultrastructural similarities between the integuments and spermatozoa as well as molecular evidence strongly suggest that rotifers and the parasitic acanthocephalans are closely related and form the clade Syndermata. Here we discuss the phylogenetic position of rotifers with regard to the gnathiferan groups. Originally, Gnathifera only included the hermaphroditic Gnathostomulida and the Syndermata. The synapomorphy supporting Gnathifera is the presence of pharyngeal hard parts such as jaws and trophi with similar ultrastructure. The newly discovered Micrognathozoa possesses such jaws and is a strong candidate for inclusion in Gnathifera because their cellular integument also has an apical intracytoplasmic lamina as in Syndermata. But Gnathifera might include other taxa. Potential candidates include the commensalistic Myzostomida and Cycliophora. Traditionally, Myzostomida has been included in the annelids but recent studies regard them either as sister group to the Acanthocephala or Cycliophora. Whether Cycliophora belongs to Gnathifera is still uncertain. Some analyses based on molecular data or total evidence point towards a close relationship between Cycliophora and Syndermata. Other cladistic studies using molecular data, morphological characters or total evidence suggest a sister group relationship between Cycliophora and Entoprocta. More molecular and morphological data and an improved sampling of taxa are obviously needed to elucidate the phylogenetic position of the rotifers and identify which phyla belong to Gnathifera.


Journal of the Marine Biological Association of the United Kingdom | 2009

Triodontoderes anulap gen. et sp. nov.—a new cyclorhagid kinorhynch genus and species from Micronesia

Martin V. Sørensen; Hyun Soo Rho

A new kinorhynch genus and species is described from coralline sand collected on the atoll of the Chuuk Islands, Micronesia. The new genus and species, Triodontoderes anulap gen. et sp. nov., is characterized by having an introvert with only five scalid rings, segment 1 consisting of one tergal and one sternal plate, segments 2 to 4 of one tergal and two sternal plates, and segments 5 to 11 of one tergal plate with midventral articulation. Triodontoderes anulap gen. et sp. nov. shares several characters with species of Zelinkaderes , including reduced number of scalid rings, distally tripartite placids, a trunk being circular in cross-section, and segments 5 to 10 being composed of a single tergal plate with midventral articulation. Until the kinorhynch relationships have been examined in a formal phylogenetic analysis, Triodontoderes gen. et sp. nov. are tentatively assigned to Zelinkaderidae.

Collaboration


Dive into the Martin V. Sørensen's collaboration.

Top Co-Authors

Avatar

Hyun Soo Rho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Fernando Pardos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuria Sánchez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Sterrer

American Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge