Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin W. Krueger is active.

Publication


Featured researches published by Martin W. Krueger.


international conference on functional imaging and modeling of heart | 2011

Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach

Martin W. Krueger; Viktor Schmidt; Catalina Tobón; F. Weber; Cristian Lorenz; David U. J. Keller; Hans Barschdorf; Michael Burdumy; Peter Neher; Gernot Plank; Kawal S. Rhode; Gunnar Seemann; Damián Sánchez-Quintana; Javier Saiz; Reza Razavi; Olaf Dössel

Atrial myofiber orientation is complex and has multiple discrete layers and bundles. A novel robust semi-automatic method to incorporate atrial anisotropy and heterogeneities into patient-specific models is introduced. The user needs to provide 22 distinct seed-points from which a network of auxiliary lines is constructed. These are used to define fiber orientation and myocardial bundles. The method was applied to 14 patient-specific volumetric models derived from CT, MRI and photographic data. Initial electrophysiological simulations show a significant influence of anisotropy and heterogeneity on the excitation pattern and P-wave duration (20.7% shortening). Fiber modeling results show good overall correspondence with anatomical data. Minor modeling errors are observed if more than four pulmonary veins exist in the model. The method is an important step towards creating realistic patient-specific atrial models for clinical applications.


IEEE Transactions on Medical Imaging | 2013

Personalization of Atrial Anatomy and Electrophysiology as a Basis for Clinical Modeling of Radio-Frequency Ablation of Atrial Fibrillation

Martin W. Krueger; Gunnar Seemann; Kawal S. Rhode; David U. J. Keller; Christopher Schilling; Aruna Arujuna; Jaswinder Gill; Mark O'Neill; Reza Razavi; Olaf Dössel

Multiscale cardiac modeling has made great advances over the last decade. Highly detailed atrial models were created and used for the investigation of initiation and perpetuation of atrial fibrillation. The next challenge is the use of personalized atrial models in clinical practice. In this study, a framework of simple and robust tools is presented, which enables the generation and validation of patient-specific anatomical and electrophysiological atrial models. Introduction of rule-based atrial fiber orientation produced a realistic excitation sequence and a better correlation to the measured electrocardiograms. Personalization of the global conduction velocity lead to a precise match of the measured P-wave duration. The use of a virtual cohort of nine patient and volunteer models averaged out possible model-specific errors. Intra-atrial excitation conduction was personalized manually from left atrial local activation time maps. Inclusion of LE-MRI data into the simulations revealed possible gaps in ablation lesions. A fast marching level set approach to compute atrial depolarization was extended to incorporate anisotropy and conduction velocity heterogeneities and reproduced the monodomain solution. The presented chain of tools is an important step towards the use of atrial models for the patient-specific AF diagnosis and ablation therapy planing.


IEEE Transactions on Biomedical Engineering | 2011

Conduction Velocity Restitution of the Human Atrium—An Efficient Measurement Protocol for Clinical Electrophysiological Studies

F. Weber; Armin Luik; Christopher Schilling; Gunnar Seemann; Martin W. Krueger; Cristian Lorenz; Claus Schmitt; Olaf Dössel

Conduction velocity (CV) and CV restitution are important substrate parameters for understanding atrial arrhythmias. The aim of this work is to (i) present a simple but feasible method to measure CV restitution in-vivo using standard circular catheters, and (ii) validate its feasibility with data measured during incremental pacing. From five patients undergoing catheter ablation, we analyzed eight datasets from sinus rhythm and incremental pacing sequences. Every wavefront was measured with a circular catheter and the electrograms were analyzed with a cosine-fit method that calculated the local CV. For each pacing cycle length, the mean local CV was determined. Furthermore, changes in global CV were estimated from the time delay between pacing stimulus and wavefront arrival. Comparing local and global CV between pacing at 500 and 300 ms, we found significant changes in seven of eight pacing sequences. On average, local CV decreased by 20 ± 15% and global CV by 17 ± 13%. The method allows for in-vivo measurements of absolute CV and CV restitution during standard clinical procedures. Such data may provide valuable insights into mechanisms of atrial arrhythmias. This is important both for improving cardiac models and also for clinical applications, such as characterizing arrhythmogenic substrates during sinus rhythm.


Journal of Electrocardiology | 2011

Alterations of atrial electrophysiology related to hemodialysis session: insights from a multiscale computer model

Martin W. Krueger; Stefano Severi; Kawal S. Rhode; Simonetta Genovesi; F. Weber; Antonio Vincenti; Paolo Fabbrini; Gunnar Seemann; Reza Razavi; Olaf Dössel

BACKGROUND The prevalence of atrial fibrillation is increased in patients with end-stage renal disease. Previous studies suggested that extracellular electrolyte alterations caused by hemodialysis (HD) therapy could be proarrhythmic. METHODS Multiscale models were used for a consequent analysis of the effects of extracellular ion concentration changes on atrial electrophysiology. Simulations were based on measured electrolyte concentrations from patients with end-stage renal disease. RESULTS Simulated conduction velocity and effective refractory period are decreased at the end of an HD session, with potassium having the strongest influence. P-wave is prolonged in patients undergoing HD therapy in the simulation as in measurements. CONCLUSIONS Electrolyte concentration alterations impact atrial electrophysiology from the action potential level to the P-wave and can be proarrhythmic, especially because of induced hypokalemia. Analysis of blood electrolytes enables patient-specific electrophysiology modeling. We are providing a tool to investigate atrial arrhythmias associated with HD therapy, which, in the future, can be used to prevent such complications.


Journal of Electrocardiology | 2014

Patient-specific modeling of atrial fibrosis increases the accuracy of sinus rhythm simulations and may explain maintenance of atrial fibrillation

Martin W. Krueger; Kawal S. Rhode; Mark D. O’Neill; C. Aldo Rinaldi; Jaswinder Gill; Reza Razavi; Gunnar Seemann; Olaf Doessel

Left atrial fibrosis is thought to contribute to the manifestation of atrial fibrillation (AF). Late Gadolinium enhancement (LGE) MRI has the potential to image regions of low perfusion, which can be related to fibrosis. We show that a simulation with a patient-specific model including left atrial regional fibrosis derived from LGE-MRI reproduces local activation in the left atrium more precisely than the regular simulation without fibrosis. AF simulations showed a spontaneous termination of the arrhythmia in the absence of fibrosis and a stable rotor center in the presence of fibrosis. The methodology may provide a tool for a deeper understanding of the mechanisms maintaining AF and eventually also for the planning of substrate-guided ablation procedures in the future.


Medical & Biological Engineering & Computing | 2013

Towards personalized clinical in-silico modeling of atrial anatomy and electrophysiology.

Martin W. Krueger; Walther H. W. Schulze; Kawal S. Rhode; Reza Razavi; Gunnar Seemann; Olaf Dössel

Computational atrial models aid the understanding of pathological mechanisms and therapeutic measures in basic research. The use of biophysical models in a clinical environment requires methods to personalize the anatomy and electrophysiology (EP). Strategies for the automation of model generation and for evaluation are needed. In this manuscript, the current efforts of clinical atrial modeling in the euHeart project are summarized within the context of recent publications in this field. Model-based segmentation methods allow for the automatic generation of ready-to-simulate patient-specific anatomical models. EP models can be adapted to patient groups based on a-priori knowledge and to the individual without significant further data acquisition. ECG and intracardiac data build the basis for excitation personalization. Information from late enhancement (LE) MRI can be used to evaluate the success of radio-frequency ablation (RFA) procedures and interactive virtual atria pave the way for RFA planning. Atrial modeling is currently in a transition from the sole use in basic research to future clinical applications. The proposed methods build the framework for model-based diagnosis and therapy evaluation and planning. Complex models allow to understand biophysical mechanisms and enable the development of simplified models for clinical applications.


international conference of the ieee engineering in medicine and biology society | 2011

A framework for personalization of computational models of the human atria

Olaf Dössel; Martin W. Krueger; F. Weber; Christopher Schilling; Walther H. W. Schulze; Gunnar Seemann

A framework for step-by-step personalization of a computational model of human atria is presented. Beginning with anatomical modeling based on CT or MRI data, next fiber structure is superimposed using a rule-based method. If available, late-enhancement-MRI images can be considered in order to mark fibrotic tissue. A first estimate of individual electrophysiology is gained from BSPM data solving the inverse problem of ECG. A final adjustment of electrophysiology is realized using intracardiac measurements. The framework is applied using several patient data. First clinical application will be computer assisted planning of RF-ablation for treatment of atrial flutter and atrial fibrillation.


medical image computing and computer assisted intervention | 2012

Automatic multi-model-based segmentation of the left atrium in cardiac MRI scans

Dominik Kutra; Axel Saalbach; Helko Lehmann; Alexandra Groth; Sebastian Peter Michael Dries; Martin W. Krueger; Olaf Dössel; Jürgen Weese

Model-based segmentation approaches have been proven to produce very accurate segmentation results while simultaneously providing an anatomic labeling for the segmented structures. However, variations of the anatomy, as they are often encountered e.g. on the drainage pattern of the pulmonary veins to the left atrium, cannot be represented by a single model. Automatic model selection extends the model-based segmentation approach to handling significant variational anatomies without user interaction. Using models for the three most common anatomical variations of the left atrium, we propose a method that uses an estimation of the local fit of different models to select the best fitting model automatically. Our approach employs the support vector machine for the automatic model selection. The method was evaluated on 42 very accurate segmentations of MRI scans using three different models. The correct model was chosen in 88.1% of the cases. In a second experiment, reflecting average segmentation results, the model corresponding to the clinical classification was automatically found in 78.0% of the cases.


Biomedizinische Technik | 2012

Comparing measured and simulated wave directions in the left atrium - a workflow for model personalization and validation.

Michael Burdumy; Armin Luik; Peter Neher; Raghed Hanna; Martin W. Krueger; Christopher Schilling; Hans Barschdorf; Cristian Lorenz; Gunnar Seemann; Claus Schmitt; Olaf Doessel; F. Weber

Abstract Atrial arrhythmias are frequently treated using catheter ablation during electrophysiological (EP) studies. However, success rates are only moderate and could be improved with the help of personalized simulation models of the atria. In this work, we present a workflow to generate and validate personalized EP simulation models based on routine clinical computed tomography (CT) scans and intracardiac electrograms. From four patient data sets, we created anatomical models from angiographic CT data with an automatic segmentation algorithm. From clinical intracardiac catheter recordings, individual conduction velocities were calculated. In these subject-specific EP models, we simulated different pacing maneuvers and measurements with circular mapping catheters that were applied in the respective patients. This way, normal sinus rhythm and pacing from a coronary sinus catheter were simulated. Wave directions and conduction velocities were quantitatively analyzed in both clinical measurements and simulated data and were compared. On average, the overall difference of wave directions was 15° (8%), and the difference of conduction velocities was 16 cm/s (17%). The method is based on routine clinical measurements and is thus easy to integrate into clinical practice. In the long run, such personalized simulations could therefore assist treatment planning and increase success rates for atrial arrhythmias.


IEEE Transactions on Biomedical Engineering | 2010

Model-Based Assessment of Tissue Perfusion and Temperature in Deep Hypothermic Patients

Michael Schwarz; Martin W. Krueger; Hans-Jörg Busch; Christoph Benk; Claudia Heilmann

Deep hypothermic circulatory arrest is necessary for some types of cardiac and aortic surgery. Perfusion of the brain can be maintained using a heart-lung machine and unilateral antegrade cerebral perfusion. Cooling rates during extracorporeal circulation depend on local perfusion. A core temperature of 24 °C-25 °C is aimed at to extend ischemic tolerance of tissues. Information on cerebral perfusion and temperature is important for the safety of patients, but hardly accessible to measurement. A combined simulation model of hemodynamics and temperature is presented in this paper. The hemodynamics model employs the transmission-line approach and integrates the Circle of Willis (CoW). This allows for parameterization of individual aberrations. Simulation results of cerebral perfusion are shown for two configurations of the CoW. The temperature model provides spatial information on temperature fields. It considers heat transfer in the various tissues retrieving data of local tissue perfusion from the hemodynamics model. The combined model is evaluated by retrospective simulation of two aortic operations.

Collaboration


Dive into the Martin W. Krueger's collaboration.

Top Co-Authors

Avatar

Olaf Dössel

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reza Razavi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Walther H. W. Schulze

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher Schilling

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Axel Loewe

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge