Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Blunder is active.

Publication


Featured researches published by Martina Blunder.


Biochemical Pharmacology | 2014

Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review.

Limei Wang; Birgit Waltenberger; Eva-Maria Pferschy-Wenzig; Martina Blunder; Xin Liu; Clemens Malainer; Tina Blazevic; Stefan Schwaiger; Judith M. Rollinger; Elke H. Heiss; Daniela Schuster; Brigitte Kopp; Rudolf Bauer; Hermann Stuppner; Verena M. Dirsch; Atanas G. Atanasov

Graphical abstract


Nitric Oxide | 2008

Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells

V. Badireenath Konkimalla; Martina Blunder; Bernhard Korn; Shahid Soomro; Herwig Jansen; Wonsuk Chang; Gary H. Posner; Rudolf Bauer; Thomas Efferth

Artemisinin is the active principle of the Chinese herb Artemisia annua L. In addition to its anti-malarial activity, artemisinin and its derivatives have been shown to exert profound anti-cancer activity. The endoperoxide moiety in the chemical structure of artemisinin is thought to be responsible for the bioactivity. Here, we analyzed the cytotoxicity and the ability of artemisinin, five of its derivatives, and two other endoperoxides to inhibit generation of nitric oxide (NO). In the RAW 264.7 mouse macrophage cell line, the well-established model cell line to analyze NO generation, artesunate revealed the highest ability to inhibit NO production among all compounds tested. In cytotoxicity assays (XTT assay), the IC(50) value of RAW 264.7 cells for artesunate was determined to be 3.1+/-0.7 microM. In order to associate the cytotoxic effects with specific alteration in gene expression related to NO metabolism and signaling, whole genome mRNA microarray analyses were conducted. RAW 264.7 cells were treated with artesunate using DMSO as vehicle control followed by microarray analysis. A total of 36 genes related to NO metabolism and signaling were found to be differentially expressed upon exposure to artesunate. Apart from NO-related genes, the expression of genes associated with other functional groups was also analyzed. Out of 24 functional groups, differential expression was most prominent in genes involved in cell-to-cell signaling and interactions. Further refinement of this analysis showed that the pathways for cAMP-mediated signaling and Wnt/beta-catenin signaling were most closely related to changes in mRNA expression. In conclusion, NO generation and signaling play a role in exhibiting cytotoxic activity of artesunate. In addition, other signaling pathways also contribute to the inhibitory effect of artesunate towards RAW 264.7 cells pointing to a multi-factorial mode of action of artesunate.


Bioorganic & Medicinal Chemistry | 2011

Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones

Abraham Abebe Wube; Antje Hüfner; Christina Thomaschitz; Martina Blunder; Manfred Kollroser; Rudolf Bauer

Graphical abstract A series of new 1-methyl-2-alkenyl-4(1H)-quinolones lacking carboxyl, fluorine and piperazinyl at position-3, -6 and -7, respectively, have been synthesized and tested in vitro against fast growing species of mycobacteria.


PLOS ONE | 2013

Polyacetylenes from Notopterygium incisum–New Selective Partial Agonists of Peroxisome Proliferator-Activated Receptor-Gamma

Atanas G. Atanasov; Martina Blunder; Nanang Fakhrudin; Xin Liu; Stefan M. Noha; Clemens Malainer; Matthias P. Kramer; Amina Cocic; Olaf Kunert; Andreas Schinkovitz; Elke H. Heiss; Daniela Schuster; Verena M. Dirsch; Rudolf Bauer

Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of glucose and lipid metabolism and therefore an important pharmacological target to combat metabolic diseases. Since the currently used full PPARγ agonists display serious side effects, identification of novel ligands, particularly partial agonists, is highly relevant. Searching for new active compounds, we investigated extracts of the underground parts of Notopterygium incisum, a medicinal plant used in traditional Chinese medicine, and observed significant PPARγ activation using a PPARγ-driven luciferase reporter model. Activity-guided fractionation of the dichloromethane extract led to the isolation of six polyacetylenes, which displayed properties of selective partial PPARγ agonists in the luciferase reporter model. Since PPARγ activation by this class of compounds has so far not been reported, we have chosen the prototypical polyacetylene falcarindiol for further investigation. The effect of falcarindiol (10 µM) in the luciferase reporter model was blocked upon co-treatment with the PPARγ antagonist T0070907 (1 µM). Falcarindiol bound to the purified human PPARγ receptor with a Ki of 3.07 µM. In silico docking studies suggested a binding mode within the ligand binding site, where hydrogen bonds to Cys285 and Glu295 are predicted to be formed in addition to extensive hydrophobic interactions. Furthermore, falcarindiol further induced 3T3-L1 preadipocyte differentiation and enhanced the insulin-induced glucose uptake in differentiated 3T3-L1 adipocytes confirming effectiveness in cell models with endogenous PPARγ expression. In conclusion, we identified falcarindiol-type polyacetylenes as a novel class of natural partial PPARγ agonists, having potential to be further explored as pharmaceutical leads or dietary supplements.


Journal of Natural Products | 2012

Naphthoquinones from Onosma paniculata Induce Cell-Cycle Arrest and Apoptosis in Melanoma Cells

Nadine Kretschmer; Beate Rinner; Alexander Deutsch; Birgit Lohberger; Heike Knausz; Olaf Kunert; Martina Blunder; Herbert Boechzelt; Helmut Schaider; Rudolf Bauer

Activity-guided fractionation of a petroleum ether-soluble extract of the roots of Onosma paniculata, which has been shown to affect the cell cycle and to induce apoptosis in melanoma cells, led to the isolation of several shikonin derivatives, namely, β-hydroxyisovalerylshikonin (1), acetylshikonin (2), dimethylacrylshikonin (3), and a mixture of α-methylbutyrylshikonin and isovalerylshikonin (4+5). All compounds exhibited strong cytotoxicity against eight cancer cell lines and MRC-5 lung fibroblasts, with 3 found to possess the most potent cytotoxicity toward four melanoma cell lines (SBcl2, WM35, WM9, and WM164). Furthermore, 3 and the mixture of 4+5 were found to interfere with cell-cycle progression in these cell lines and led to an increasing number of cells in the subG1 region as well as to caspase-3/7 activation, indicating apoptotic cell death.


Bioorganic & Medicinal Chemistry Letters | 2011

Silanetriols as in vitro inhibitors for AChE

Martina Blunder; Natascha Hurkes; Stefan Spirk; Martina List; Rudolf Pietschnig

Graphical abstract


European Journal of Medicinal Chemistry | 2011

Synthesis of N-substituted 2-[(1E)-alkenyl]-4-(1H)-quinolone derivatives as antimycobacterial agents against non-tubercular mycobacteria

Abraham Abebe Wube; Christina Hochfellner; Martina Blunder; Rudolf Bauer; Antje Hüfner

In an effort to improve biological activities and to examine antimycobacterial-lipophilicity relationships of 2-[(1E)-alkenyl)]-4-(1H)-quinolones, we have synthesized a series of 30 quinolones by introducing several alkyl groups, an alkenyl and an alkynyl group at N-1. All synthetic compounds were first tested in vitro against Mycobacterium smegmatis and the most active compounds (MIC values ∼3.0–7.0 μM) were further examined against three other rapidly growing strains of mycobacteria using a microtiter broth dilution assay. The Clog P values of the synthetic compounds were calculated to provide an estimate of their lipophilicity. Compounds 18e, 19a and 19b displayed the most potent inhibitory effect against M. smegmatis mc2155 with an MIC value of ∼1.5 μM, which was twenty fold and thirteen fold more potent than isoniazid and ethambutol, respectively. On the other hand, compounds 17e, 18e and 19a were most active against Mycobacterium fortuitum and Mycobacterium phlei with an MIC value of ∼3.0 μM. In the human diploid embryonic lung cell line MRC-5 cytotoxicity assay, the derivatives showed moderate to strong cytotoxic activity. Although the antimycobacterial activity of our synthetic compounds could not be correlated with the calculated log P values, an increase in lipophilicity enhances the antimycobacterial activity and C13–C15 total chain length at positions 1 and 2 is required to achieve optimal inhibitory effect against the test strains.


Journal of Natural Products | 2014

Polyyne Hybrid Compounds from Notopterygium incisum with Peroxisome Proliferator-Activated Receptor Gamma Agonistic Effects

Xin Liu; Olaf Kunert; Martina Blunder; Nanang Fakhrudin; Stefan M. Noha; Clemens Malainer; Andreas Schinkovitz; Elke H. Heiss; Atanas G. Atanasov; Manfred Kollroser; Daniela Schuster; Verena M. Dirsch; Rudolf Bauer

In the search for peroxisome proliferator-activated receptor gamma (PPARγ) active constituents from the roots and rhizomes of Notopterygium incisum, 11 new polyacetylene derivatives (1–11) were isolated. Their structures were elucidated by NMR and HRESIMS as new polyyne hybrid molecules of falcarindiol with sesquiterpenoid or phenylpropanoid moieties, named notoethers A–H (1–8) and notoincisols A–C (9–11), respectively. Notoincisol B (10) and notoincisol C (11) represent two new carbon skeletons. When tested for PPARγ activation in a luciferase reporter assay with HEK-293 cells, notoethers A–C (1–3), notoincisol A (9), and notoincisol B (10) showed promising agonistic activity (EC50 values of 1.7 to 2.3 μM). In addition, notoincisol A (9) exhibited inhibitory activity on NO production of stimulated RAW 264.7 macrophages.


Molecules | 2012

Synthesis and antibacterial evaluation of a new series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones.

Abraham Abebe Wube; Juan-David Guzman; Antje Hüfner; Christina Hochfellner; Martina Blunder; Rudolf Bauer; Simon Gibbons; Sanjib Bhakta

To gain further insight into the structural requirements of the aliphatic group at position 2 for their antimycobacterial activity, some N-alkyl-4-(1H)-quinolones bearing position 2 alkynyls with various chain length and triple bond positions were prepared and tested for in vitro antibacterial activity against rapidly-growing strains of mycobacteria, the vaccine strain Mycobacterium bovis BCG, and methicillin-resistant Staphylococcus aureus strains, EMRSA-15 and -16. The compounds were also evaluated for inhibition of ATP-dependent MurE ligase of Mycobacterium tuberculosis. The lowest MIC value of 0.5 mg/L (1.2–1.5 µM) was found against M. fortuitum and M. smegmatis. These compounds displayed no or only weak toxicity to the human lung fibroblast cell line MRC-5 at 100 µM concentration. The quinolone derivatives exhibited pronounced activity against the epidemic MRSA strains (EMRSA-15 and -16) with MIC values of 2–128 mg/L (5.3–364.7 µM), and M. bovis BCG with an MIC value of 25 mg/L (66.0–77.4 µM). In addition, the compounds inhibited the MurE ligase of M. tuberculosis with moderate to weak activity showing IC50 values of 200–774 µM. The increased selectivity towards mycobacterial bacilli with reference to MRC-5 cells observed for 2-alkynyl quinolones compared to their corresponding 2-alkenyl analogues serves to highlight the mycobacterial specific effect of the triple bond. Exploration of a terminal bromine atom at the side chain of N-alkyl-2-(E)-alkenyl-4-(1H)-quinolones showed improved antimycobacterial activity whereas a cyclopropyl residue at N-1 was suggested to be detrimental to antibacterial activity.


Biochemical Pharmacology | 2010

Inhibition of inducible nitric oxide synthase by bis(helenalinyl)glutarate in RAW264.7 macrophages

V. Badireenath Konkimalla; Martina Blunder; Rudolf Bauer; Thomas Efferth

Nitric oxide (NO) plays a role in various physiological and pathophysiological conditions such as immunoregulatory and inflammatory processes. Hence, NO and its generating enzyme, inducible nitric oxide synthase (iNOS) may not only be of diagnostic and prognostic value, but may also serve as targets for novel therapeutic options. In the present investigation, we have screened a phytochemical library by correlating the IC(50) values for 531 natural products of 60 cell lines with the microarray-based mRNA expression of 95 genes known to be involved in NO metabolism and signaling with the aim to identify candidate compounds as inhibitors for NO metabolism and signaling. We identified bis(helenalinyl)glutarate (BHG) as putative candidate compound. Indeed, BHG inhibited NO production (IC(50) value: 0.90+/-0.04microM) and down-regulated iNOS protein expression (IC(50) value: 1.12+/-0.16microM) of RAW264.7 mouse macrophages in the presence of lipopolysaccharide and interferon-gamma. Performing XTT cytotoxicity assays, we found that BHG inhibited cell growth in a dose-dependent manner with an IC(50) value of 5.6microM. To gain insight into molecular pathways involved in NO inhibition and cytotoxicity, we performed microarray experiments which were exemplarily validated by real-time RT-PCR. A total of 227 genes (67 up- and 160 down-regulated) were obtained, which exhibited significant differences in mRNA regulation between BHG-treated and untreated RAW264.7 macrophages. Sixteen of 227 genes are known to be involved in NO-signaling. Pathway analyses revealed that further five and four down-regulated genes belong to the glucocorticoid receptor and interleukin-1 and interleukin-10 pathways, respectively. An interference of these two pathways and NO is known for inflammation and auto-immune diseases. The therapeutic potential of this compound has to be explored in the future.

Collaboration


Dive into the Martina Blunder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge