Martina Gáliková
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martina Gáliková.
Genetics | 2015
Martina Gáliková; Max Diesner; Peter Klepsatel; Philip Hehlert; Yanjun Xu; Iris Bickmeyer; Reinhard Predel; Ronald P. Kühnlein
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.
Evolution | 2013
Peter Klepsatel; Martina Gáliková; Nicola De Maio; Christian D. Huber; Christian Schlötterer; Thomas Flatt
The major goal of evolutionary thermal biology is to understand how variation in temperature shapes phenotypic evolution. Comparing thermal reaction norms among populations from different thermal environments allows us to gain insights into the evolutionary mechanisms underlying thermal adaptation. Here, we have examined thermal adaptation in six wild populations of the fruit fly (Drosophila melanogaster) from markedly different natural environments by analyzing thermal reaction norms for fecundity, thorax length, wing area, and ovariole number under ecologically realistic fluctuating temperature regimes in the laboratory. Contrary to expectation, we found only minor differences in the thermal optima for fecundity among populations. Differentiation among populations was mainly due to differences in absolute (and partly also relative) thermal fecundity performance. Despite significant variation among populations in the absolute values of morphological traits, we observed only minor differentiation in their reaction norms. Overall, the thermal reaction norms for all traits examined were remarkably similar among different populations. Our results therefore suggest that thermal adaptation in D. melanogaster predominantly involves evolutionary changes in absolute trait values rather than in aspects of thermal reaction norms.
Journal of Evolutionary Biology | 2013
Peter Klepsatel; Martina Gáliková; N. De Maio; S. Ricci; Christian Schlötterer; Thomas Flatt
The life history of the fruit fly (Drosophila melanogaster) is well understood, but fitness components are rarely measured by following single individuals over their lifetime, thereby limiting insights into lifetime reproductive success, reproductive senescence and post‐reproductive lifespan. Moreover, most studies have examined long‐established laboratory strains rather than freshly caught individuals and may thus be confounded by adaptation to laboratory culture, inbreeding or mutation accumulation. Here, we have followed the life histories of individual females from three recently caught, non‐laboratory‐adapted wild populations of D. melanogaster. Populations varied in a number of life‐history traits, including ovariole number, fecundity, hatchability and lifespan. To describe individual patterns of age‐specific fecundity, we developed a new model that allowed us to distinguish four phases during a females life: a phase of reproductive maturation, followed by a period of linear and then exponential decline in fecundity and, finally, a post‐ovipository period. Individual females exhibited clear‐cut fecundity peaks, which contrasts with previous analyses, and post‐peak levels of fecundity declined independently of how long females lived. Notably, females had a pronounced post‐reproductive lifespan, which on average made up 40% of total lifespan. Post‐reproductive lifespan did not differ among populations and was not correlated with reproductive fitness components, supporting the hypothesis that this period is a highly variable, random ‘add‐on’ at the end of reproductive life rather than a correlate of selection on reproductive fitness. Most life‐history traits were positively correlated, a pattern that might be due to genotype by environment interactions when wild flies are brought into a novel laboratory environment but that is unlikely explained by inbreeding or positive mutational covariance caused by mutation accumulation.
Evolution | 2014
Peter Klepsatel; Martina Gáliková; Christian D. Huber; Thomas Flatt
Understanding how natural environments shape phenotypic variation is a major aim in evolutionary biology. Here, we have examined clinal, likely genetically based variation in morphology among 19 populations of the fruit fly (Drosophila melanogaster) from Africa and Europe, spanning a range from sea level to 3000 m altitude and including locations approximating the southern and northern range limit. We were interested in testing whether latitude and altitude have similar phenotypic effects, as has often been postulated. Both latitude and altitude were positively correlated with wing area, ovariole number, and cell number. In contrast, latitude and altitude had opposite effects on the ratio between ovariole number and body size, which was negatively correlated with egg production rate per ovariole. We also used transgenic manipulation to examine how increased cell number affects morphology and found that larger transgenic flies, due to a higher number of cells, had more ovarioles, larger wings, and, unlike flies from natural populations, increased wing loading. Clinal patterns in morphology are thus not a simple function of changes in body size; instead, each trait might be subject to different selection pressures. Together, our results provide compelling evidence for profound similarities as well as differences between phenotypic effects of latitude and altitude.
Scientific Reports | 2016
Peter Klepsatel; Martina Gáliková; Yanjun Xu; Ronald P. Kühnlein
Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting “memory effect” on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness.
npj Aging and Mechanisms of Disease | 2017
Kathrin Garschall; Hanna Dellago; Martina Gáliková; Markus Schosserer; Thomas Flatt; Johannes Grillari
Mechanisms that ensure and maintain the stability of genetic information are fundamentally important for organismal function and can have a large impact on disease, aging, and life span. While a multi-layered cellular apparatus exists to detect and respond to DNA damage, various insults from environmental and endogenous sources continuously affect DNA integrity. Over time this can lead to the accumulation of somatic mutations, which is thought to be one of the major causes of aging. We have previously found that overexpression of the essential human DNA repair and splicing factor SNEV, also called PRP19 or hPso4, extends replicative life span of cultured human endothelial cells and impedes accumulation of DNA damage. Here, we show that adult-specific overexpression of dPrp19, the D. melanogaster ortholog of human SNEV/PRP19/hPso4, robustly extends life span in female fruit flies. This increase in life span is accompanied by reduced levels of DNA damage and improved resistance to oxidative and genotoxic stress. Our findings suggest that dPrp19 plays an evolutionarily conserved role in aging, life span modulation and stress resistance, and support the notion that superior DNA maintenance is key to longevity.Aging: Living longer by improving DNA repairIncreasing levels of DNA repair factor Prp19 in fruit flies extends their life span and protects against stress. Prp19 is a protein that is present in a wide range of organisms and enables human endothelial cells to live longer in vitro. In this article, an international team of scientists from Austria, Germany and Switzerland found that higher Prp19 levels also prolong the life span of a whole organism in fruit flies, reduce DNA damage and increase survival when exposed to DNA damaging compounds. In contrast to female flies, males were unaffected. Their findings support the long-held view that repair of DNA damage, one of the hallmarks of aging, is key to longevity. They also provide an intriguing but poorly understood connection between cellular aging and the survival of whole organisms.
Scientific Reports | 2017
Martina Gáliková; Peter Klepsatel; Judith Münch; Ronald P. Kühnlein
The human PAPLA1 phospholipase family is associated with hereditary spastic paraplegia (HSP), a neurodegenerative syndrome characterized by progressive spasticity and weakness of the lower limbs. Taking advantage of a new Drosophila PAPLA1 mutant, we describe here novel functions of this phospholipase family in fly development, reproduction, and energy metabolism. Loss of Drosophila PAPLA1 reduces egg hatchability, pre-adult viability, developmental speed, and impairs reproductive functions of both males and females. In addition, our work describes novel metabolic roles of PAPLA1, manifested as decreased food intake, lower energy expenditure, and reduced ATP levels of the mutants. Moreover, PAPLA1 has an important role in the glycogen metabolism, being required for expression of several regulators of carbohydrate metabolism and for glycogen storage. In contrast, global loss of PAPLA1 does not affect fat reserves in adult flies. Interestingly, several of the PAPLA1 phenotypes in fly are reminiscent of symptoms described in some HSP patients, suggesting evolutionary conserved functions of PAPLA1 family in the affected processes. Altogether, this work reveals novel physiological functions of PAPLA1, which are likely evolutionary conserved from flies to humans.
International Journal of Molecular Sciences | 2018
Martina Gáliková; Peter Klepsatel
Being overweight increases the risk of many metabolic disorders, but how it affects lifespan is not completely clear. Not all obese people become ill, and the exact mechanism that turns excessive fat storage into a health-threatening state remains unknown. Drosophila melanogaster has served as an excellent model for many diseases, including obesity, diabetes, and hyperglycemia-associated disorders, such as cardiomyopathy or nephropathy. Here, we review the connections between fat storage and aging in different types of fly obesity. Whereas obesity induced by high-fat or high-sugar diet is associated with hyperglycemia, cardiomyopathy, and in some cases, shortening of lifespan, there are also examples in which obesity correlates with longevity. Transgenic lines with downregulations of the insulin/insulin-like growth factor (IIS) and target of rapamycin (TOR) signaling pathways, flies reared under dietary restriction, and even certain longevity selection lines are obese, yet long-lived. The mechanisms that underlie the differential lifespans in distinct types of obesity remain to be elucidated, but fat turnover, inflammatory pathways, and dysregulations of glucose metabolism may play key roles. Altogether, Drosophila is an excellent model to study the physiology of adiposity in both health and disease.
European Journal of Lipid Science and Technology | 2017
Martina Gáliková; Peter Klepsatel; Yanjun Xu; Ronald P. Kühnlein
Aging (Albany NY) | 2010
Martina Gáliková; Thomas Flatt