Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald P. Kühnlein is active.

Publication


Featured researches published by Ronald P. Kühnlein.


The EMBO Journal | 1994

spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo

Ronald P. Kühnlein; Götz Frommer; Markus Friedrich; Marcos González-Gaitán; Juliane F. Wagner-Bernholz; Walter J. Gehring; Herbert Jäckle; Reinhard Schuh

The region specific homeotic gene spalt (sal) of Drosophila melanogaster promotes the specification of terminal pattern elements as opposed to segments in the trunk. Our results show that the previously reported sal transcription unit was misidentified. Based on P‐element mediated germ line transformation and DNA sequence analysis of sal mutant alleles, we identified the transcription unit that carries sal function. sal is located close to the misidentified transcription unit, and it is expressed in similar temporal and spatial patterns during embryogenesis. The sal gene encodes a zinc finger protein of novel structure composed of three widely spaced ‘double zinc finger’ motifs of internally conserved sequences and a single zinc finger motif of different sequence. Antibodies produced against the sal protein show that sal is first expressed at the blastoderm stage and later in restricted areas of the embryonic nervous system as well as in the developing trachea. The antibodies detect sal homologous proteins in corresponding spatial and temporal patterns in the embryos of related insect species. Sequence analysis of the sal gene of Drosophila virilis, a species which is phylogenetically separated by approximately 60 million years, suggests that the sal function is conserved during evolution, consistent with its proposed role in head formation during arthropod evolution.


Molecular & Cellular Proteomics | 2006

Characterization of the Drosophila Lipid Droplet Subproteome

Mathias Beller; Dietmar Riedel; Lothar Jänsch; Guido Dieterich; Jürgen Wehland; Herbert Jäckle; Ronald P. Kühnlein

Lipid storage droplets are universal organelles essential for the cellular and organismal lipometabolism including energy homeostasis. Despite their apparently simple design they are proposed to participate in a growing number of cellular processes, raising the question to what extent the functional multifariousness is reflected by a complex organellar proteome composition. Here we present 248 proteins identified in a subproteome analysis using lipid storage droplets of Drosophila melanogaster fat body tissue. In addition to previously known lipid droplet-associated PAT (Perilipin, ADRP, and TIP47) domain proteins and homologues of several mammalian lipid droplet proteins, this study identified a number of proteins of diverse biological function, including intracellular trafficking supportive of the dynamic and multifaceted character of these organelles. We performed intracellular localization studies on selected newly identified subproteome members both in tissue culture cells and in fat body cells directly. The results suggest that the lipid droplets of fat body cells are of combinatorial protein composition. We propose that subsets of lipid droplets within single cells are characterized by a protein “zip code,” which reflects functional differences or specific metabolic states.


Current Biology | 2003

Control of Fat Storage by a Drosophila PAT Domain Protein

Sebastian Grönke; Mathias Beller; Sonja Fellert; Hariharasubramanian Ramakrishnan; Herbert Jäckle; Ronald P. Kühnlein

In Drosophila, the masses and sheets of adipose tissue that are distributed throughout the fly are collectively called the fat body. Like mammalian adipocytes, insect fat body cells provide the major energy reserve of the animal organism. Both cell types accumulate triacylglycerols (TAG) in intracellular lipid droplets; this finding suggests that the strategy of energy storage as well as the machinery and the control to achieve fat storage might be evolutionarily conserved. Studies addressing the control of lipid-based energy homeostasis of mammals identified proteins of the PAT domain family, such as Perilipin, which reside on lipid droplets. Perilipin knockout mice are lean and resistant to diet-induced obesity. Conversely, Perilipin expression in preadipocyte tissue culture increases lipid storage by reducing the rate of TAG hydrolysis. Factors that mediate corresponding processes in invertebrates are still unknown. We examined the function of Lsd2, one of only two PAT domain-encoding genes in the Drosophila genome. Lsd2 acts in a Perilipin-like manner, suggesting that components regulating homeostasis of lipid-based energy storage at the lipid droplet membrane are evolutionarily conserved.


PLOS Biology | 2007

Dual Lipolytic Control of Body Fat Storage and Mobilization in Drosophila

Sebastian Grönke; Günter Müller; Jochen G. Hirsch; Sonja Fellert; Alexandra Andreou; Tobias Haase; Herbert Jäckle; Ronald P. Kühnlein

Energy homeostasis is a fundamental property of animal life, providing a genetically fixed balance between fat storage and mobilization. The importance of body fat regulation is emphasized by dysfunctions resulting in obesity and lipodystrophy in humans. Packaging of storage fat in intracellular lipid droplets, and the various molecules and mechanisms guiding storage-fat mobilization, are conserved between mammals and insects. We generated a Drosophila mutant lacking the receptor (AKHR) of the adipokinetic hormone signaling pathway, an insect lipolytic pathway related to ß-adrenergic signaling in mammals. Combined genetic, physiological, and biochemical analyses provide in vivo evidence that AKHR is as important for chronic accumulation and acute mobilization of storage fat as is the Brummer lipase, the homolog of mammalian adipose triglyceride lipase (ATGL). Simultaneous loss of Brummer and AKHR causes extreme obesity and blocks acute storage-fat mobilization in flies. Our data demonstrate that storage-fat mobilization in the fly is coordinated by two lipocatabolic systems, which are essential to adjust normal body fat content and ensure lifelong fat-storage homeostasis.


Mechanisms of Development | 2000

A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes)

Felix Loosli; Reinhard W. Köster; Matthias Carl; Ronald P. Kühnlein; Thorsten Henrich; Manuela Mücke; Annette Krone; Joachim Wittbrodt

In a pilot screen, we assayed the efficiency of ethylnitrosourea (ENU) as a chemical mutagen to induce mutations that lead to early embryonic and larval lethal phenotypes in the Japanese medaka fish, Oryzias latipes. ENU acts as a very efficient mutagen inducing mutations at high rates in germ cells. Three repeated treatments of male fish in 3 mM ENU for 1 h results in locus specific mutation rates of 1.1-1.95 x10(-3). Mutagenized males were outcrossed to wild type females and the F1 offspring was used to establish F2 families. F2 siblings were intercrossed and the F3 progeny was scored 24, 48 and 72 h after fertilization for morphological alterations affecting eye development. The presented mutant phenotypes were identified using morphological criteria and occur during early developmental stages of medaka. They are stably inherited in a Mendelian fashion. The high efficiency of ENU to induce mutations in this pilot screen indicates that chemical mutagenesis and screening for morphologically visible phenotypes in medaka fish allows the genetic analysis of specific aspects of vertebrate development complementing the screens performed in other vertebrate model systems.


Cell Metabolism | 2010

PERILIPIN-Dependent Control of Lipid Droplet Structure and Fat Storage in Drosophila

Mathias Beller; Anna V. Bulankina; He-Hsuan Hsiao; Henning Urlaub; Herbert Jäckle; Ronald P. Kühnlein

Lipid droplets are intracellular organelles enriched in adipose tissue that govern the body fat stores of animals. In mammals, members of the evolutionarily conserved PERILIPIN protein family are associated with the lipid droplet surface and participate in lipid homeostasis. Here, we show that Drosophila mutants lacking the PERILIPIN PLIN1 are hyperphagic and suffer from adult-onset obesity. PLIN1 is a central and Janus-faced component of fat metabolism. It provides barrier function to storage lipid breakdown and acts as a key factor of stimulated lipolysis by modulating the access of proteins to the lipid droplet surface. It also shapes lipid droplet structure, transforming unilocular into multilocular fat cells. We generated flies devoid of all PERILIPIN family members and show that they exhibit impaired yet functional body fat regulation. Our data reveal the existence of a basal and possibly ancient lipid homeostasis system.


Mechanisms of Development | 2000

Ectopic Sox3 activity elicits sensory placode formation.

Reinhard W. Köster; Ronald P. Kühnlein; Joachim Wittbrodt

The induction of sensory organ placodes, in particular the lens placode, represents the paradigm for induction. We show that medaka Sox3 is expressed in the neuroectoderm and in the placodes of all sensory organs prior to placode formation and subsequently in placode-derived tissues. Ectopic Sox3 expression leads to ectopic expression of Pax6 and Eya1 in embryonic ectoderm and causes ectopic lens and otic vesicle formation. The descendants of cells ectopically expressing Sox3-mRNA contribute to ectopic lens tissue. This suggests a permissive role for Sox3 in establishing a placodal competence. In addition, ectopic Sox3 expression leads to the dysgenesis of the endogenous sensory organs. Both effects of ectopic Sox3 expression can be separated by ectopic expression of a truncated Sox3 variant depending on its expression level. Our data suggests that Sox3 is a permissive factor for sensory placode formation and plays an important role in sensory organ development.


Current Biology | 2012

Lipid droplets control the maternal histone supply of Drosophila embryos.

Zhihuan Li; Katharina Thiel; Peter J. Thul; Mathias Beller; Ronald P. Kühnlein; Michael A. Welte

BACKGROUND Histones are essential for chromatin packing, yet free histones not incorporated into chromatin are toxic. While in most cells multiple regulatory mechanisms prevent accumulation of excess histones, early Drosophila embryos contain massive extranuclear histone stores, thought to be essential for development. Excess histones H2A, H2B, and H2Av are bound to lipid droplets, ubiquitous fat storage organelles especially abundant in embryos. It has been proposed that sequestration on lipid droplets allows safe transient storage of supernumerary histones. RESULTS Here, we critically test this sequestration hypothesis. We find that histones are anchored to lipid droplets via the previously uncharacterized protein Jabba: Jabba localizes to droplets, coimmunoprecipitates with histones, and is necessary to recruit histones to droplets. Jabba mutants lack the maternal H2A, H2B, and H2Av deposits altogether; presumably, these deposits are eliminated unless sequestered on droplets. Jabba mutant embryos compensate for this histone deficit by translating maternal histone mRNAs. However, when histone expression is mildly compromised, the maternal histone protein deposits are essential for proper early mitoses and for viability. CONCLUSIONS A growing number of proteins from other cellular compartments have been found to transiently associate with lipid droplets. Our studies provide the first insight into mechanism and functional relevance of this sequestration. We conclude that sequestration on lipid droplets allows embryos to build up extranuclear histone stores and provides histones for chromatin assembly during times of high demand. This work reveals a novel aspect of histone metabolism and establishes lipid droplets as functional storage sites for unstable or detrimental proteins.


Journal of Cell Science | 2012

Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization

Junfeng Bi; Yanhui Xiang; Haiyang Chen; Zhonghua Liu; Sebastian Grönke; Ronald P. Kühnlein; Xun Huang

Summary Lipid droplets are the main lipid storage sites in cells. Lipid droplet homeostasis is regulated by the surface accessibility of lipases. Mammalian adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are two key lipases for basal and stimulated lipolysis, respectively. Perilipins, the best known lipid droplet surface proteins, can either recruit lipases or prevent the access of lipases to lipid droplets. Mammals have five perilipin proteins, which often exhibit redundant functions, precluding the analysis of the exact role of individual perilipins in vivo. Drosophila have only two perilipins, PLIN1/LSD-1 and PLIN2/LSD-2. Previous studies revealed that PLIN2 is important for protecting lipid droplets from lipolysis mediated by Brummer (BMM), the Drosophila homolog of ATGL. In this study, we report the functional analysis of PLIN1 and Drosophila HSL. Loss-of-function and overexpression studies reveal that unlike PLIN2, PLIN1 probably facilitates lipid mobilization. HSL is recruited from the cytosol to the surface of lipid droplets under starved conditions and PLIN1 is necessary for the starved induced lipid droplet localization of HSL. Moreover, phenotypic analysis of plin1;plin2 double mutants revealed that PLIN1 and PLIN2 might have redundant functions in protecting lipid droplets from lipolysis. Therefore, the two Drosophila perilipins have both opposite and redundant roles. Domain swapping and deletion analyses indicate that the C-terminal region of PLIN1 confers functional specificity to PLIN1. Our study highlights the complex roles of Drosophila perilipin proteins and the evolutionarily conserved regulation of HSL translocation by perilipins.


Progress in Lipid Research | 2011

The contribution of the Drosophila model to lipid droplet research.

Ronald P. Kühnlein

Intracellular lipid droplets have long been misconceived as evolutionarily conserved but functionally frugal components of cellular metabolism. An ever-growing repertoire of functions has elevated lipid droplets to fully-fledged cellular organelles. Insights into the multifariousness of these organelles have been obtained from a range of model systems now employed for lipid droplet research including the fruit fly, Drosophila melanogaster. This review summarizes the progress in fly lipid droplet research along four main avenues: the role of lipid droplets in fat storage homeostasis, the control of lipid droplet structure, the lipid droplet surface as a dynamic protein-association platform, and lipid droplets as mobile organelles. Moreover, the research potential of the fruit fly model is discussed with respect to the prevailing general questions in lipid droplet biology.

Collaboration


Dive into the Ronald P. Kühnlein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge