Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina L. Jones is active.

Publication


Featured researches published by Martina L. Jones.


Journal of Immunological Methods | 2010

A method for rapid, ligation-independent reformatting of recombinant monoclonal antibodies

Martina L. Jones; Therese Seldon; Matthew Smede; Ashleigh Linville; David Y. Chin; Ross Barnard; Stephen M. Mahler; David J. Munster; Derek N. J. Hart; Peter P. Gray; Trent P. Munro

Recombinant monoclonal antibodies currently dominate the protein biologics marketplace. The path from target antigen discovery and screening, to a recombinant therapeutic antibody can be time-consuming and laborious. We describe a set of expression vectors, termed mAbXpress, that enable rapid and sequence-independent insertion of antibody variable regions into human constant region backbones. This method takes advantage of the In Fusion cloning system from Clontech, which allows ligation-free, high-efficiency insertion of the variable region cassette without the addition of extraneous amino acids. These modular vectors simplify the antibody reformatting process during the preliminary evaluation of therapeutic or diagnostic candidates. The resulting constructs can be used directly for transient or amplifiable, stable expression in mammalian cells. The effectiveness of this method was demonstrated by the creation of a functional, fully human anti-human CD83 monoclonal antibody.


mAbs | 2015

Nanocell targeting using engineered bispecific antibodies

Karin Taylor; Christopher B. Howard; Martina L. Jones; Ilya Sedliarou; Jennifer MacDiarmid; Himanshu Brahmbhatt; Trent P. Munro; Stephen M. Mahler

There are many design formats for bispecific antibodies (BsAbs), and the best design choice is highly dependent on the final application. Our aim was to engineer BsAbs to target a novel nanocell (EnGeneIC Delivery Vehicle or EDVTMnanocell) to the epidermal growth factor receptor (EGFR). EDVTMnanocells are coated with lipopolysaccharide (LPS), and BsAb designs incorporated single chain Fv (scFv) fragments derived from an anti-LPS antibody (1H10) and an anti-EGFR antibody, ABX-EGF. We engineered various BsAb formats with monovalent or bivalent binding arms and linked scFv fragments via either glycine-serine (G4S) or Fc-linkers. Binding analyses utilizing ELISA, surface plasmon resonance, bio-layer interferometry, flow cytometry and fluorescence microscopy showed that binding to LPS and to either soluble recombinant EGFR or MDA-MB-468 cells expressing EGFR, was conserved for all construct designs. However, the Fc-linked BsAbs led to nanocell clumping upon binding to EDVTMnanocells. Clumping was eliminated when additional disulfide bonds were incorporated into the scFv components of the BsAbs, but this resulted in lower BsAb expression. The G4S-linked tandem scFv BsAb format was the optimal design with respect to EDV binding and expression yield. Doxorubicin-loaded EDVTMnanocells actively targeted with tandem scFv BsAb in vivo to MDA-MB-468-derived tumors in mouse xenograft models enhanced tumor regression by 40% compared to passively targeted EDVTMnanocells. BsAbs therefore provide a functional means to deliver EDVTMnanocells to target cells.


Advanced Healthcare Materials | 2016

Overcoming Instability of Antibody-Nanomaterial Conjugates: Next Generation Targeted Nanomedicines Using Bispecific Antibodies

Christopher B. Howard; Nicholas L. Fletcher; Zachary H. Houston; Adrian V. Fuchs; Nathan R. B. Boase; Joshua D. Simpson; Lyndon J. Raftery; Tim Ruder; Martina L. Jones; Christopher J. de Bakker; Stephen M. Mahler; Kristofer J. Thurecht

Targeted nanomaterials promise improved therapeutic efficacy, however their application in nanomedicine is limited due to complexities associated with protein conjugations to synthetic nanocarriers. A facile method to generate actively targeted nanomaterials is developed and exemplified using polyethylene glycol (PEG)-functional nanostructures coupled to a bispecific antibody (BsAb) with dual specificity for methoxy PEG (mPEG) epitopes and cancer targets such as epidermal growth factor receptor (EGFR). The EGFR-mPEG BsAb binds with high affinity to recombinant EGFR (KD : 1 × 10(-9) m) and hyperbranched polymer (HBP) consisting of mPEG (KD : 10 × 10(-9) m) and demonstrates higher avidity for HBP compared to linear mPEG. The binding of BsAb-HBP bioconjugate to EGFR on MDA-MB-468 cancer cells is investigated in vitro using a fluorescently labeled polymer, and in in vivo xenograft models by small animal optical imaging. The antibody-targeted nanostructures show improved accumulation in tumor cells compared to non-targeted nanomaterials. This demonstrates a facile approach for tuning targeting ligand density on nanomaterials, by modulating surface functionality. Antibody fragments are tethered to the nanomaterial through simple mixing prior to administration to animals, overcoming the extensive procedures encountered for developing targeted nanomedicines.


Leukemia | 2016

Immunosuppressive human anti-CD83 monoclonal antibody depletion of activated dendritic cells in transplantation

Therese Seldon; R. Pryor; Anna Palkova; Martina L. Jones; Nirupama D. Verma; M. Findova; Katleen Braet; Yonghua Sheng; Yongjun Fan; E Y Zhou; James D. Marks; Trent P. Munro; Stephen M. Mahler; Ross Barnard; Phillip D. Fromm; Pablo A. Silveira; Zehra Elgundi; Xinsheng Ju; Georgina J. Clark; Kenneth F. Bradstock; David J. Munster; Derek N. J. Hart

Current immunosuppressive/anti-inflammatory agents target the responding effector arm of the immune response and their nonspecific action increases the risk of infection and malignancy. These effects impact on their use in allogeneic haematopoietic cell transplantation and other forms of transplantation. Interventions that target activated dendritic cells (DCs) have the potential to suppress the induction of undesired immune responses (for example, graft versus host disease (GVHD) or transplant rejection) and to leave protective T-cell immune responses intact (for example, cytomegalovirus (CMV) immunity). We developed a human IgG1 monoclonal antibody (mAb), 3C12, specific for CD83, which is expressed on activated but not resting DC. The 3C12 mAb and an affinity improved version, 3C12C, depleted CD83+ cells by CD16+ NK cell-mediated antibody-dependent cellular cytotoxicity, and inhibited allogeneic T-cell proliferation in vitro. A single dose of 3C12C prevented human peripheral blood mononuclear cell-induced acute GVHD in SCID mouse recipients. The mAb 3C12C depleted CMRF-44+CD83bright activated DC but spared CD83dim/- DC in vivo. It reduced human T-cell activation in vivo and maintained the proportion of CD4+ FoxP3+ CD25+ Treg cells and also viral-specific CD8+ T cells. The anti-CD83 mAb, 3C12C, merits further evaluation as a new immunosuppressive agent in transplantation.


Scientific Reports | 2016

Targeting membrane proteins for antibody discovery using phage display.

Martina L. Jones; Mohamed A. Alfaleh; Sumukh Kumble; Shuo Zhang; Geoffrey W. Osborne; Michael Yeh; Neetika Arora; Jeff Jia Cheng Hou; Christopher B. Howard; David Y. Chin; Stephen M. Mahler

A critical factor in the successful isolation of new antibodies by phage display is the presentation of a correctly folded antigen. While this is relatively simple for soluble proteins which can be purified and immobilized onto a plastic surface, membrane proteins offer significant challenges for antibody discovery. Whole cell panning allows presentation of the membrane protein in its native conformation, but is complicated by a low target antigen density, high background of irrelevant antigens and non-specific binding of phage particles to cell surfaces. The method described here uses transient transfection of alternating host cell lines and stringent washing steps to address each of these limitations. The successful isolation of antibodies from a naive scFv library is described for three membrane bound proteins; human CD83, canine CD117 and bat CD11b.


PLOS ONE | 2017

Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay.

Kebaneilwe Lebani; Martina L. Jones; Daniel Watterson; Andrea Ranzoni; Renee J. Traves; Paul R. Young; Stephen M. Mahler

The multidimensional nature of dengue virus (DENV) infections, which can be caused by four distinct serotypes of the virus, complicates the sensitivity of assays designed for the diagnosis of infection. Different viral markers can be optimally detected at different stages of infection. Of particular clinical importance is the early identification of infection, which is pivotal for disease management and the development of blood screening assays. Non-structural protein 1 (NS1) is an early surrogate marker of infection and its detection in serum coincides with detectable viraemia. The aim of this work was to isolate and characterise serotype-specific monoclonal antibodies that bind to NS1 for each of the four DENV serotypes. This was achieved using phage display and a subtractive biopanning strategy to direct the antibody selection towards serotype-specific epitopes. This antibody isolation strategy has advantages over immunisation techniques where it is difficult to avoid antibody responses to cross-reactive, immunodominant epitopes. Serotype specificity to recombinant antigen for each of the antibodies was confirmed by Enzyme Linked Immunosorbent Assay (ELISA) and Surface Plasmon Resonance. Confirmation of binding to native DENV NS1 was achieved using ELISA and immunofluorescence assay on DENV infected Vero cells. No cross-reactivity with Zika or Kunjin viruses was observed. A previously isolated pan-reactive antibody that binds to an immunodominant epitope was able to pair with each of the serotype-specific antibodies in a sandwich ELISA, indicating that the serotype specific antibodies bind to epitopes which are all spatially distinct from the immunodominant epitope. These antibodies were suitable for use in a multiplexed assay for simultaneous detection and serotyping of DENV NS1 in human serum. This work demonstrates that phage display coupled with novel biopanning strategies is a valuable in vitro methodology for isolation of binders that can discern amongst antigens with high homology for diagnostic applicability.


Clinical and Vaccine Immunology | 2007

Use of Chimeric Antibodies as Positive Controls in an Enzyme-Linked Immunosorbent Assay for Diagnosis of Scrub Typhus (Infection by Orientia tsutsugamushi)

Martina L. Jones; Ross Barnard

ABSTRACT The use of human sera collected from individuals of known infected and noninfected status is necessary for the validation of diagnostic assays and for the determination of cutoff values. However, the routine inclusion of pooled human sera from infected individuals for use as positive controls in commercial assay kits has many disadvantages. Sufficient quantities of sera can be difficult to obtain, and there are ethical and safety issues to be considered. Additionally, each batch of control material requires standardization, as each will differ in antibody titer. We have genetically engineered chimeric immunoglobulin G (IgG), IgM, and IgA antibodies consisting of mouse-derived variable regions and human constant regions derived from peripheral blood lymphocytes. The chimeric nature of these antibodies allows the desired antigen specificity created through mouse immunization and hybridoma technology while retaining a human constant region required for recognition by the enzyme-conjugated antihuman signal antibody. We have investigated the potential use of chimeric IgG with specificity for the major surface antigen of Orientia tsutsugamushi as an alternative positive control for inclusion in a commercial enzyme-linked immunosorbent assay kit for the diagnosis of rickettsia scrub typhus (caused by infection with O. tsutsugamushi). Chimeric IgG was expressed in stably transfected CHO cells, allowing production of unlimited quantities. The purified protein was found to have a much greater specificity for the scrub typhus antigen than the serum-derived controls. The methods described could be applied to other assay kits for the detection of antibodies against infectious agents.


Molecules | 2017

Computational identification of antibody epitopes on the dengue virus NS1 protein

Martina L. Jones; Fiona S. Legge; Kebaneilwe Lebani; Stephen M. Mahler; Paul R. Young; Daniel Watterson; Herbert R. Treutlein; Jun Zeng

We have previously described a method to predict antigenic epitopes on proteins recognized by specific antibodies. Here we have applied this method to identify epitopes on the NS1 proteins of the four Dengue virus serotypes (DENV1–4) that are bound by a small panel of monoclonal antibodies 1H7.4, 1G5.3 and Gus2. Several epitope regions were predicted for these antibodies and these were found to reflect the experimentally observed reactivities. The known binding epitopes on DENV2 for the antibodies 1H7.4 and 1G5.3 were identified, revealing the reasons for the serotype specificity of 1H7.4 and 1G5.3, and the non-selectivity of Gus2. As DENV NS1 is critical for virus replication and a key vaccine candidate, epitope prediction will be valuable in designing appropriate vaccine control strategies. The ability to predict potential epitopes by computational methods significantly reduces the amount of experimental work required to screen peptide libraries for epitope mapping.


PLOS ONE | 2017

Targeting mesothelin receptors with drug-loaded bacterial nanocells suppresses human mesothelioma tumour growth in mouse xenograft models

Mohamed A. Alfaleh; Christopher B. Howard; Ilya Sedliarou; Martina L. Jones; Reema Gudhka; Natasha Vanegas; Jocelyn Weiss; Julia H. Suurbach; Christopher J. de Bakker; Michael R. Milne; Bree Rumballe; Jennifer MacDiarmid; Himanshu Brahmbhatt; Stephen M. Mahler

Human malignant mesothelioma is a chemoresistant tumour that develops from mesothelial cells, commonly associated with asbestos exposure. Malignant mesothelioma incidence rates in European countries are still rising and Australia has one of the highest burdens of malignant mesothelioma on a population basis in the world. Therapy using systemic delivery of free cytotoxic agents is associated with many undesirable side effects due to non-selectivity, and is thus dose-limited which limits its therapeutic potential. Therefore, increasing the selectivity of anti-cancer agents has the potential to dramatically enhance drug efficacy and reduce toxicity. EnGeneIC Dream Vectors (EDV) are antibody-targeted nanocells which can be loaded with cytotoxic drugs and delivered to specific cancer cells via bispecific antibodies (BsAbs) which target the EDV and a cancer cell-specific receptor, simultaneously. BsAbs were designed to target doxorubicin-loaded EDVs to cancer cells via cell surface mesothelin (MSLN). Flow cytometry was used to investigate cell binding and induction of apoptosis, and confocal microscopy to visualize internalization. Mouse xenograft models were used to assess anti-tumour effects in vivo, followed by immunohistochemistry for ex vivo evaluation of proliferation and necrosis. BsAb-targeted, doxorubicin-loaded EDVs were able to bind to and internalize within mesothelioma cells in vitro via MSLN receptors and induce apoptosis. In mice xenografts, the BsAb-targeted, doxorubicin-loaded EDVs suppressed the tumour growth and also decreased cell proliferation. Thus, the use of MSLN-specific antibodies to deliver encapsulated doxorubicin can provide a novel and alternative modality for treatment of mesothelioma.


mAbs | 2018

Functional domain analysis of SOX18 transcription factor using a single-chain variable fragment-based approach

Frank Fontaine; Stephen Francis Goodall; Jeremy W. Prokop; Christopher B. Howard; Mehdi Moustaqil; Sumukh Kumble; Daniel T. Rasicci; Geoffrey W. Osborne; Yann Gambin; Emma Sierecki; Martina L. Jones; Johannes Zuegg; Stephen M. Mahler; Mathias Francois

ABSTRACT Antibodies are routinely used to study the activity of transcription factors, using various in vitro and in vivo approaches such as electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, genome-wide method analysis coupled with next generation sequencing, or mass spectrometry. More recently, a new application for antibodies has emerged as crystallisation scaffolds for difficult to crystallise proteins, such as transcription factors. Only in a few rare cases, antibodies have been used to modulate the activity of transcription factors, and there is a real gap in our knowledge on how to efficiently design antibodies to interfere with transcription. The molecular function of transcription factors is underpinned by complex networks of protein-protein interaction and in theory, setting aside intra-cellular delivery challenges, developing antibody-based approaches to modulate transcription factor activity appears a viable option. Here, we demonstrate that antibodies or an antibody single-chain variable region fragments are powerful molecular tools to unravel complex protein-DNA and protein-protein binding mechanisms. In this study, we focus on the molecular mode of action of the transcription factor SOX18, a key modulator of endothelial cell fate during development, as well as an attractive target in certain pathophysiological conditions such as solid cancer metastasis. The engineered antibody we designed inhibits SOX18 transcriptional activity, by interfering specifically with an 8-amino-acid motif in the C-terminal region directly adjacent to α-Helix 3 of SOX18 HMG domain, thereby disrupting protein-protein interaction. This new approach establishes a framework to guide the study of transcription factors interactomes using antibodies as molecular handles.

Collaboration


Dive into the Martina L. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trent P. Munro

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross Barnard

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Therese Seldon

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Yonghua Sheng

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge