Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martina Mancini is active.

Publication


Featured researches published by Martina Mancini.


Gait & Posture | 2012

Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed.

Rebecca Spain; R.J. St. George; A. Salarian; Martina Mancini; J.M. Wagner; Fay B. Horak; Dennis Bourdette

While balance and gait limitations are hallmarks of multiple sclerosis (MS), standard stopwatch-timed measures practical for use in the clinic are insensitive in minimally affected patients. This prevents early detection and intervention for mobility problems. The study sought to determine if body-worn sensors could detect differences in balance and gait between people with MS with normal walking speeds and healthy controls. Thirty-one MS and twenty-eight age- and sex-matched control subjects were tested using body-worn sensors both during quiet stance and gait (Timed Up and Go test, TUG). Results were compared to stopwatch-timed measures. Stopwatch durations of the TUG and Timed 25 Foot Walk tests were not significantly different between groups. However, during quiet stance with eyes closed, people with MS had significantly greater sway acceleration amplitude than controls (p=0.02). During gait, people with MS had greater trunk angular range of motion in roll (medio-lateral flexion, p=0.017) and yaw (axial rotation, p=0.026) planes. Turning duration through 180° was also longer in MS (p=0.031). Thus, body-worn motion sensors detected mobility differences between MS and healthy controls when traditional timed tests could not. This portable technology provides objective and quantitative mobility data previously not obtainable in the clinic, and may prove a useful outcome measure for early mobility changes in MS.


Brain | 2013

Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait

Brett W. Fling; Rajal G. Cohen; Martina Mancini; John G. Nutt; Damian A. Fair; Fay B. Horak

Freezing of gait is one of the most debilitating symptoms in Parkinsons disease as it causes falls and reduces mobility and quality of life. The pedunculopontine nucleus is one of the major nuclei of the mesencephalic locomotor region and has neurons related to anticipatory postural adjustments preceding step initiation as well as to the step itself, thus it may be critical for coupling posture and gait to avoid freezing. Because freezing of gait and postural impairments have been related to frontal lesions and frontal dysfunction such as executive function, we hypothesized that freezing is associated with disrupted connectivity between midbrain locomotor regions and medial frontal cortex. We used diffusion tensor imaging to quantify structural connectivity of the pedunculopontine nucleus in patients with Parkinsons disease with freezing of gait, without freezing, and healthy age-matched controls. We also included behavioural tasks to gauge severity of freezing of gait, quantify gait metrics, and assess executive cognitive functions to determine whether between-group differences in executive dysfunction were related to pedunculopontine nucleus structural network connectivity. Using seed regions from the pedunculopontine nucleus, we were able to delineate white matter connections between the spinal cord, cerebellum, pedunculopontine nucleus, subcortical and frontal/prefrontal cortical regions. The current study is the first to demonstrate differences in structural connectivity of the identified locomotor pathway in patients with freezing of gait. We report reduced connectivity of the pedunculopontine nucleus with the cerebellum, thalamus and multiple regions of the frontal cortex. Moreover, these structural differences were observed solely in the right hemisphere of patients with freezing of gait. Finally, we show that the more left hemisphere-lateralized the pedunculopontine nucleus tract volume, the poorer the performance on cognitive tasks requiring the initiation of appropriate actions and/or the inhibition of inappropriate actions, specifically within patients with freezing. These results support the notion that freezing of gait is strongly related to structural deficits in the right hemispheres locomotor network involving prefrontal cortical areas involved in executive inhibition function.


PLOS ONE | 2014

Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait

Brett W. Fling; Rajal G. Cohen; Martina Mancini; Samuel D. Carpenter; Damien A. Fair; John G. Nutt; Fay B. Horak

Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss of lower-order, automatic control of gait by the basal ganglia.


Movement Disorders | 2013

Objective biomarkers of balance and gait for Parkinson's disease using body‐worn sensors

Pt Fay B. Horak PhD; Martina Mancini

Balance and gait impairments characterize the progression of Parkinsons disease (PD), predict the risk of falling, and are important contributors to reduced quality of life. Advances in technology of small, body‐worn, inertial sensors have made it possible to develop quick, objective measures of balance and gait impairments in the clinic for research trials and clinical practice. Objective balance and gait metrics may eventually provide useful biomarkers for PD. In fact, objective balance and gait measures are already being used as surrogate endpoints for demonstrating clinical efficacy of new treatments, in place of counting falls from diaries, using stop‐watch measures of gait speed, or clinical balance rating scales. This review summarizes the types of objective measures available from body‐worn sensors. The metrics are organized based on the neural control system for mobility affected by PD: postural stability in stance, postural responses, gait initiation, gait (temporal‐spatial lower and upper body coordination and dynamic equilibrium), postural transitions, and freezing of gait. However, the explosion of metrics derived by wearable sensors during prescribed balance and gait tasks, which are abnormal in individuals with PD, do not yet qualify as behavioral biomarkers, because many balance and gait impairments observed in PD are not specific to the disease, nor have they been related to specific pathophysiologic biomarkers. In the future, the most useful balance and gait biomarkers for PD will be those that are sensitive and specific for early PD and are related to the underlying disease process.


Movement Disorders | 2013

Framework for understanding balance dysfunction in Parkinson's disease.

Bernadette Schoneburg; Martina Mancini; Fay B. Horak; John G. Nutt

People with Parkinsons disease (PD) suffer from progressive impairment in their mobility. Locomotor and balance dysfunction that impairs mobility in PD is an important cause of physical and psychosocial disability. The recognition and evaluation of balance dysfunction by the clinician are an essential component of managing PD. In this review, we describe a framework for understanding balance dysfunction in PD to help clinicians recognize patients who are at risk for falling and impaired mobility.


Movement Disorders | 2015

Levodopa Is a Double-Edged Sword for Balance and Gait in People With Parkinson's Disease

Carolin Curtze; John G. Nutt; Patricia Carlson-Kuhta; Martina Mancini; Fay B. Horak

The effects of levodopa on balance and gait function in people with Parkinsons disease (PD) is controversial. This study compared the relative responsiveness to l‐dopa on six domains of balance and gait: postural sway in stance; gait pace; dynamic stability; gait initiation; arm swing; and turning in people with mild and severe PD, with and without dyskinesia.


Sensors | 2013

Continuous monitoring of turning in patients with movement disability.

Mahmoud El-Gohary; Sean Pearson; James McNames; Martina Mancini; Fay B. Horak; Sabato Mellone; Lorenzo Chiari

Difficulty with turning is a major contributor to mobility disability and falls in people with movement disorders, such as Parkinsons disease (PD). Turning often results in freezing and/or falling in patients with PD. However, asking a patient to execute a turn in the clinic often does not reveal their impairments. Continuous monitoring of turning with wearable sensors during spontaneous daily activities may help clinicians and patients determine who is at risk of falls and could benefit from preventative interventions. In this study, we show that continuous monitoring of natural turning with wearable sensors during daily activities inside and outside the home is feasible for people with PD and elderly people. We developed an algorithm to detect and characterize turns during gait, using wearable inertial sensors. First, we validate the turning algorithm in the laboratory against a Motion Analysis system and against a video analysis of 21 PD patients and 19 control (CT) subjects wearing an inertial sensor on the pelvis. Compared to Motion Analysis and video, the algorithm maintained a sensitivity of 0.90 and 0.76 and a specificity of 0.75 and 0.65, respectively. Second, we apply the turning algorithm to data collected in the home from 12 PD and 18 CT subjects. The algorithm successfully detects turn characteristics, and the results show that, compared to controls, PD subjects tend to take shorter turns with smaller turn angles and more steps. Furthermore, PD subjects show more variability in all turn metrics throughout the day and the week.


Journal of Bioengineering and Biomedical Science | 2013

Mobility Lab to Assess Balance and Gait with Synchronized Body-worn Sensors.

Martina Mancini; Laurie A. King; A. Salarian; Lars Holmstrom; James McNames; Fay B. Horak

This paper is a commentary to introduce how rehabilitation professionals can use a new, body-worn sensor system to obtain objective measures of balance and gait. Current assessments of balance and gait in clinical rehabilitation are largely limited to subjective scales, simple stop-watch measures, or complex, expensive machines not practical or largely available. Although accelerometers and gyroscopes have been shown to accurately quantify many aspects of gait and balance kinematics, only recently a comprehensive, portable system has become available for clinicians. By measuring body motion during tests that clinicians are already performing, such as the Timed Up and Go test (TUG) and the Clinical Test of Sensory Integration for Balance (CITSIB), the additional time for assessment is minimal. By providing instant analysis of balance and gait and comparing a patients performance to age-matched control values, therapists receive an objective, sensitive screening profile of balance and gait strategies. This motion screening profile can be used to identify mild abnormalities not obvious with traditional clinical testing, measure small changes due to rehabilitation, and design customized rehabilitation programs for each individuals specific balance and gait deficits.


Archives of Physical Medicine and Rehabilitation | 2014

Instrumenting the Balance Error Scoring System for Use With Patients Reporting Persistent Balance Problems After Mild Traumatic Brain Injury

Laurie A. King; Fay B. Horak; Martina Mancini; Donald Pierce; Kelsey C. Priest; James C. Chesnutt; Patrick Sullivan; Julie C. Chapman

OBJECTIVE To determine whether alterations to the Balance Error Scoring System (BESS), such as modified conditions and/or instrumentation, would improve the ability to correctly classify traumatic brain injury (TBI) status in patients with mild TBI with persistent self-reported balance complaints. DESIGN Cross-sectional study. SETTING Outpatient clinic. PARTICIPANTS Subjects (n=13; age, 16.3±2y) with a recent history of concussion (mild TBI group) and demographically matched control subjects (n=13; age, 16.7±2y; control group). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Outcome measures included the BESS, modified BESS, instrumented BESS, and instrumented modified BESS. All subjects were tested on the noninstrumented BESS and modified BESS and were scored by visual observation of instability in 6 and 3 stance conditions, respectively. Instrumentation of these 2 tests used 1 inertial sensor with an accelerometer and gyroscope to quantify bidirectional body sway. RESULTS Scores from the BESS and the modified BESS tests were similar between groups. However, results from the instrumented measures using the inertial sensor were significantly different between groups. The instrumented modified BESS had superior diagnostic classification and the largest area under the curve when compared with the other balance measures. CONCLUSIONS A concussion may disrupt the sensory processing required for optimal postural control, which was measured by sway during quiet stance. These results suggest that the use of portable inertial sensors may be useful in the move toward more objective and sensitive measures of balance control postconcussion, but more work is needed to increase sensitivity.


Physical Therapy | 2015

Role of Body-Worn Movement Monitor Technology for Balance and Gait Rehabilitation

Fay B. Horak; Laurie A. King; Martina Mancini

This perspective article will discuss the potential role of body-worn movement monitors for balance and gait assessment and treatment in rehabilitation. Recent advances in inexpensive, wireless sensor technology and smart devices are resulting in an explosion of miniature, portable sensors that can quickly and accurately quantify body motion. Practical and useful movement monitoring systems are now becoming available. It is critical that therapists understand the potential advantages and limitations of such emerging technology. One important advantage of obtaining objective measures of balance and gait from body-worn sensors is impairment-level metrics characterizing how and why functional performance of balance and gait activities are impaired. Therapy can then be focused on the specific physiological reasons for difficulty in walking or balancing during specific tasks. A second advantage of using technology to measure balance and gait behavior is the increased sensitivity of the balance and gait measures to document mild disability and change with rehabilitation. A third advantage of measuring movement, such as postural sway and gait characteristics, with body-worn sensors is the opportunity for immediate biofeedback provided to patients that can focus attention and enhance performance. In the future, body-worn sensors may allow therapists to perform telerehabilitation to monitor compliance with home exercise programs and the quality of their natural mobility in the community. Therapists need technological systems that are quick to use and provide actionable information and useful reports for their patients and referring physicians. Therapists should look for systems that provide measures that have been validated with respect to gold standard accuracy and to clinically relevant outcomes such as fall risk and severity of disability.

Collaboration


Dive into the Martina Mancini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James McNames

Portland State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge