Martina Schleicher
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Martina Schleicher.
Biomaterials | 2010
Jianye Zhou; Olaf Fritze; Martina Schleicher; Hans-Peter Wendel; Katja Schenke-Layland; Csaba Harasztosi; Shengshou Hu; Ulrich A. Stock
Decellularized xenogeneic tissue represents an interesting material for heart valve tissue engineering. The prospect objective is removal of all viable cells while preserving extracellular matrix (ECM) integrity. The major concerns of all decellularization protocols remain ECM disruption, immunogenicity and thrombogenicity. Accordingly the aim of this study was visualization of ultrastructural ECM disruption and human immune response and thrombogenicity using different decellularization protocols of porcine heart valves. Porcine pulmonary leaflets were decellularized with four different protocols: sodium deoxycholate, sodium dedecylsulfate, trypsin/EDTA, and trypsin-detergent-nuclease. Then the tissues were processed for histology and two-photon laser scanning microscopy (LSM). For thrombogenicity and immunogenicity testing tissues were incubated with human blood. The histological examination revealed no remaining cells and no significant differences in the ECM histoarchitecture in any group. LSM detected significant ECM alterations in all groups except sodium deoxycholate group with an almost completely preserved ECM. There was no increased immunogenicity between fresh and decellularized tissue. Compared to GA-fixed tissue however significantly increased immune responses and thrombogenicity was observed in all protocols. From our experiment, sodium deoxycholate enables cell removal with almost complete preservation of ECM structures. And all of these four decellularization protocols affected human immunological response and increased thrombogenicity.
Biomaterials | 2010
Alexandra Bayrak; Maria Tyralla; Juliane Ladhoff; Martina Schleicher; Ulrich A. Stock; Hans-Dieter Volk; Martina Seifert
Several tissue engineering approaches for the treatment of cardiovascular diseases are based on a xenogeneic extracellular matrix. However, the application of engineered heart valves has failed in some patients, causing severe signs of inflammation by so far undetermined processes. Therefore we investigated the immune-mediated responses to porcine valve matrices (native, decellularized and glutaraldehyde-fixed) and to purified xenogeneic extracellular matrix proteins (ECMp). The induction of human immune responses in vitro was evaluated by analyzing the co-stimulatory effects of matrices and ECMp collagen and elastin on the proliferation of immune cell sub-populations via CFSE-based proliferation assays. The pattern of cytokine release was also determined. In porcine matrix punches we demonstrated strong immune responses with the native as well as the decellularized type, in contrast to attenuated effects with glutaraldehyde-fixed matrices. Furthermore, our results indicate that collagen type I (porcine and human) and human elastin were able to elicit proliferation in co-stimulation with anti-CD3 antibody, accompanied by a strong release of Th1 cytokines (IFN-gamma, TNF-alpha). In contrast, porcine elastin did not elicit any response at all. This low immunogenic potential of porcine elastin suggests its suitability for the creation of new tissue engineering heart valve scaffolds in the future.
Journal of Vascular Research | 2012
Olaf Fritze; Beatriz Romero; Martina Schleicher; Marie Paule Jacob; Djin-Ye Oh; Barry Starcher; Katja Schenke-Layland; Julia Buján; Ulrich A. Stock
Background: Age-related arterial alterations affecting cells, matrix and biomolecules are the main culprit for initiation and progression of cardiovascular disease. The objective of this study is to gain further insights into the complex mechanism of elastic tissue ageing in human aortic blood vessels. Methods: One hundred and nineteen human aortic tissue samples were collected from adult patients (101 males, 18 females; age 40–86 years) undergoing coronary artery bypass grafting. Overall extracellular matrix architecture was examined by multiphoton laser scanning microscopy and histology. Matrix metalloproteinases 2 and 9, corresponding tissue inhibitors 1 and 2 as well as desmosine were determined. mRNA levels of tropoelastin were assessed by quantitative RT-PCR. Results: Age-related destruction of the vascular elastic laminas as well as a loss of interlamina cross-links were observed by laser scanning microscopy. These results were confirmed by histology indicating increasing interlamina gaps. There were no significant differences in matrix turnover or desmosine content. A steady decrease in tropoelastin mRNA by about 50% per 10 years of age increase was observed. Conclusions: Our findings indicate that ageing is accompanied by a destruction of the elastic vascular structure. However, tropoelastin expression analysis suggests that elastogenesis occurs throughout life with constantly decreasing levels.
Biomaterials | 2010
Milan Lisy; Juliane Pennecke; Kelvin G. M. Brockbank; Olaf Fritze; Martina Schleicher; Katja Schenke-Layland; Renate Kaulitz; Iris Riemann; Corinna N. Weber; Josephine Braun; Kerstin E. Mueller; Falko Fend; Torsten Scheunert; Achim D. Gruber; Johannes M. Albes; Agnes J. Huber; Ulrich A. Stock
Transplantation of cryopreserved heart valves (allografts) is limited by immune responses, inflammation, subsequent structural deterioration and an expensive infrastructure. In previous studies we demonstrated that conventional frozen cryopreservation (FC) is accompanied by serious alterations of extracellular matrix (ECM) structures. As the main culprit of the observed damages ice crystal formation was identified. Objective of this study was the application principles of cryoprotection as observed in nature, occurring in animals or plants, for ice-free cryopreservation (IFC) of heart valves. Using IFC, valves were processed and stored above the glass transition temperature of the cryoprotectant formulation (-124 degrees C) at -80 degrees C to avoid any ice formation, tissue-glass cracking and preserving ECM. After implantation in the orthotopic pulmonary position in sheep, we demonstrate that IFC resulted in cell free matrices, while maintaining crucial ECM-components such as elastin and collagen, translating into superior hemodynamics. In contrast, we reveal that FC valves showed ECM damage that was not restored in vivo, and T-cell inflammation of the stroma with significant leaflet thickening. Compared to currently applied FC practice IFC also reduced infrastructural needs for preservation, storage and shipping. These results have important implications for clinical valve transplantation including the promise of better long-term function and lower costs.
International Journal of Biomaterials | 2012
Martina Schleicher; Jan Hansmann; Bentsian Elkin; Petra J. Kluger; Simone Liebscher; Agnes J. Huber; Olaf Fritze; Christine Schille; Michaela Müller; Katja Schenke-Layland; Martina Seifert; Heike Walles; Hans-Peter Wendel; Ulrich A. Stock
In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleotides immobilized by adsorption on parylene (poly(monoaminomethyl-para-xylene)) coated polystyrene and ePTFE were resistant to high shear stress (9.5 N/m2) and human blood serum for up to 96 h. Adhesion of murine endothelial progenitor cells, HUVECs and endothelial cells from human adult saphenous veins as well as viability over a period of 14 days of HUVECs on oligonucleotide coated samples under dynamic culture conditions was significantly enhanced (P < 0.05). Oligonucleotide-coated surfaces revealed low thrombogenicity and excellent hemocompatibility after incubation with human blood. These properties suggest the suitability of immobilization of DNA-oligonucleotides for biofunctionalization of blood vessel substitutes for improved in vivo endothelialization.
Cells Tissues Organs | 2012
Agnes J. Huber; Kelvin G. M. Brockbank; Iris Riemann; Martina Schleicher; Katja Schenke-Layland; Olaf Fritze; Hans-Peter Wendel; Ulrich A. Stock
Objective: Arterial allografts are routinely employed for reconstruction of infected prosthetic grafts. Usually, banked cryopreserved arteries are used; however, existing conventional freezing cryopreservation techniques applied to arteries are expensive. In contrast, a new ice-free cryopreservation technique results in processing, storage and shipping methods that are technically simpler and potentially less costly. The objective of this study was to determine whether or not ice-free cryopreservation causes tissue changes that might preclude clinical use. Methods: Conventionally frozen cryopreserved porcine arteries were compared with ice-free cryopreserved arteries and untreated fresh controls using morphological (light, scanning electron and laser scanning microscopy), viability (alamarBlue assay) and hemocompatibility methods (blood cell adhesion, thrombin/antithrombin-III-complex, polymorphonuclear neutrophil-elastase, β-thromboglobulin and terminal complement complex SC5b-9). Results: No statistically significant structural or hemocompatibility differences between ice-free cryopreserved and frozen tissues were detectable. There were no quantitative differences observed for either autofluorescence (elastin) or second harmonic generation (collagen) measured by laser scanning microscopy. Cell viability in ice-free cryopreserved arteries was significantly reduced compared to fresh and frozen tissues (p < 0.05). Conclusions: The formation of ice in aortic artery preservation did not make a difference in histology, structure or thrombogenicity, but significantly increased viability compared with a preservation method that precludes ice formation. Reduced cell viability should not reduce in vivo performance. Therefore, ice-free cryopreservation is a potentially safe and cost-effective technique for the cryopreservation of blood vessel allografts.
Biopreservation and Biobanking | 2012
Agnes J. Huber; Kelvin G. M. Brockbank; Timo Aberle; Martina Schleicher; Zhen Z. Chen; Elisabeth D. Greene; Milan Lisy; Ulrich A. Stock
We have previously demonstrated storage of ice-free cryopreserved heart valves at -80°C without the need for liquid nitrogen, with the aims of decreasing manufacturing costs and reducing employee safety hazards. The objectives of the present study were a further simplification of the ice-free cryopreservation method and characterization of tissue viability. Porcine pulmonary heart valves were permeated with an 83% cryoprotectant solution (VS83) followed by rapid cooling and storage at -80°C. The cryoprotectants were added and removed in either single or multiple steps. Fresh untreated frozen controls employing 10% dimethylsulfoxide and controlled rate freezing to -80°C, and storage in vapor phase nitrogen were also performed. After rewarming and washing, cryopreserved leaflets were compared with fresh controls using the resazurin reduction metabolism assay. Comparison of valve tissues in which the cryoprotectants were added and removed in either single or multiple steps demonstrated similar viability results for the muscle, conduit, and leaflet components. The ice-free cryopreserved conduit and leaflet components were significantly less viable than either fresh or frozen tissues. The muscle component, although less viable, was not significantly different. The changes in tissue viability were a function of cryoprotectant exposure, and resulting cytotoxicity, not temperature reduction during storage. TUNEL staining showed that ice-free cryopreservation did not induce significant amounts of apoptosis, suggesting that necrosis is the predominant cell death pathway in ice-free cryopreserved heart valves. There was very little difference in cell viability when the cryoprotectants were added and removed in a single step versus multiple steps. Ice-free cryopreserved valve tissues demonstrated very low viability compared with controls. These results support further simplification of the ice-free cryopreservation method.
Regenerative Medicine | 2009
Martina Schleicher; Hans-Peter Wendel; Olaf Fritze; Ulrich A. Stock
Cell and Tissue Banking | 2012
Kelvin G. M. Brockbank; Katja Schenke-Layland; Elizabeth D. Greene; Zhenzhen Chen; Olaf Fritze; Martina Schleicher; Renate Kaulitz; Iris Riemann; Falko Fend; Johannes M. Albes; Ulrich A. Stock; Milan Lisy
Tissue Engineering Part C-methods | 2010
Olaf Fritze; Martina Schleicher; Karsten König; Katja Schenke-Layland; Ulrich A. Stock; Csaba Harasztosi