Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martine Le Merrer is active.

Publication


Featured researches published by Martine Le Merrer.


American Journal of Human Genetics | 2007

Pleiotropic Effects of CEP290 (NPHP6) Mutations Extend to Meckel Syndrome

Lekbir Baala; Sophie Audollent; Jelena Martinovic; Catherine Ozilou; Marie-Claude Babron; Sivanthiny Sivanandamoorthy; Sophie Saunier; Rémi Salomon; Marie Gonzales; Eleanor Rattenberry; Chantal Esculpavit; Annick Toutain; Claude Moraine; Philippe Parent; Pascale Marcorelles; Marie-Christine Dauge; Joëlle Roume; Martine Le Merrer; Vardiella Meiner; Karen Meir; Françoise Menez; Anne-Marie Beaufrère; Christine Francannet; Julia Tantau; Martine Sinico; Yves Dumez; Fiona Macdonald; Arnold Munnich; Stanislas Lyonnet; Marie-Claire Gubler

Meckel syndrome (MKS) is a rare autosomal recessive lethal condition characterized by central nervous system malformations, polydactyly, multicystic kidney dysplasia, and ductal changes of the liver. Three loci have been mapped (MKS1-MKS3), and two genes have been identified (MKS1/FLJ20345 and MKS3/TMEM67), whereas the gene at the MKS2 locus remains unknown. To identify new MKS loci, a genomewide linkage scan was performed using 10-cM-resolution microsatellite markers in eight families. The highest heterogeneity LOD score was obtained for chromosome 12, in an interval containing CEP290, a gene recently identified as causative of Joubert syndrome (JS) and isolated Leber congenital amaurosis. In view of our recent findings of allelism, at the MKS3 locus, between these two disorders, CEP290 was considered a candidate, and homozygous or compound heterozygous truncating mutations were identified in four families. Sequencing of additional cases identified CEP290 mutations in two fetuses with MKS and in four families presenting a cerebro-reno-digital syndrome, with a phenotype overlapping MKS and JS, further demonstrating that MKS and JS can be variable expressions of the same ciliopathy. These data identify a fourth locus for MKS (MKS4) and the CEP290 gene as responsible for MKS.


Nature Genetics | 2011

Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature

Tracy A. Briggs; Gillian I. Rice; Sarah B. Daly; Jill Urquhart; Hannah Gornall; Brigitte Bader-Meunier; Kannan Baskar; Shankar Baskar; Veronique Baudouin; Michael W. Beresford; Graeme C.M. Black; Rebecca J. Dearman; Francis de Zegher; Emily S. Foster; Camille Frances; Alison R. Hayman; Emma Hilton; Chantal Job-Deslandre; M. L. Kulkarni; Martine Le Merrer; Agnès Linglart; Simon C. Lovell; Kathrin Maurer; L. Musset; Vincent Navarro; Capucine Picard; Anne Puel; Frédéric Rieux-Laucat; Chaim M. Roifman; Sabine Scholl-Bürgi

We studied ten individuals from eight families showing features consistent with the immuno-osseous dysplasia spondyloenchondrodysplasia. Of particular note was the diverse spectrum of autoimmune phenotypes observed in these individuals (cases), including systemic lupus erythematosus, Sjögrens syndrome, hemolytic anemia, thrombocytopenia, hypothyroidism, inflammatory myositis, Raynauds disease and vitiligo. Haplotype data indicated the disease gene to be on chromosome 19p13, and linkage analysis yielded a combined multipoint log10 odds (LOD) score of 3.6. Sequencing of ACP5, encoding tartrate-resistant acid phosphatase, identified biallelic mutations in each of the cases studied, and in vivo testing confirmed a loss of expressed protein. All eight cases assayed showed elevated serum interferon alpha activity, and gene expression profiling in whole blood defined a type I interferon signature. Our findings reveal a previously unrecognized link between tartrate-resistant acid phosphatase activity and interferon metabolism and highlight the importance of type I interferon in the genesis of autoimmunity.


Mechanisms of Development | 1998

Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification

Anne-Lise Delezoide; Catherine Benoist-Lasselin; Laurence Legeai-Mallet; Martine Le Merrer; Arnold Munnich; Michel Vekemans; Jacky Bonaventure

Mutations in FGFR 1-3 genes account for various human craniosynostosis syndromes, while dwarfism syndromes have been ascribed exclusively to FGFR 3 mutations. However, the exact role of FGFR 1-3 genes in human skeletal development is not understood. Here we describe the expression pattern of FGFR 1-3 genes during human embryonic and fetal endochondral and membranous ossification. In the limb bud, FGFR 1 and FGFR 2 are initially expressed in the mesenchyme and in epidermal cells, respectively, but FGFR 3 is undetectable. At later stages, FGFR 2 appears as the first marker of prechondrogenic condensations. In the growing long bones, FGFR 1 and FGFR 2 transcripts are restricted to the perichondrium and periosteum, while FGFR 3 is mainly expressed in mature chondrocytes of the cartilage growth plate. Marked FGFR 2 expression is also observed in the periarticular cartilage. Finally, membranous ossification of the skull vault is characterized by co-expression of the FGFR 1-3 genes in preosteoblasts and osteoblasts. In summary, the simultaneous expression of FGFR 1-3 genes in cranial sutures might explain their involvement in craniosynostosis syndromes, whereas the specific expression of FGFR 3 in chondrocytes does correlate with the involvement of FGFR 3 mutations in inherited defective growth of human long bones.


American Journal of Medical Genetics | 1998

Syndromal and nonsyndromal primary trigonocephaly: Analysis of a series of 237 patients

Elizabeth Lajeunie; Martine Le Merrer; Daniel Marchac; Dominique Renier

From a series of 1,713 patients with craniosynostosis hospitalized between 1976 and 1996, 237 propositi with metopic synostosis were analyzed. The prevalence of metopic synostosis was estimated in the order of 1 in 15,000 children. Family information was obtained from 184 propositi from 179 families. The male-to-female ratio was 3.3:1. There was no maternal or paternal age effect. A family history was obtained in 10 of the 179 families, giving a 5.6% figure of familial cases. The frequency of twinning was 7.8% with two concordances for metopic synostosis in two monozygotic twin pairs. The male-to-female ratio, the twinning frequency, and the proportion of familial cases in trigonocephaly are very similar to those observed in scaphocephaly, which also involves the longitudinal sutural system. Fetal exposure to valproic acid was noticed in eight cases. The series was divided into two groups: nonsyndromal trigonocephaly (n = 184) and trigonocephaly associated with other malformations (n = 53). The second group included 13 cases of well-delineated syndromes and 40 cases of trigonocephaly associated with one or more malformations, but without any known syndrome, that could be undelineated syndromes. These groups differed significantly in their mental prognosis.


Nature Genetics | 2008

ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation

Carine Le Goff; Fanny Morice-Picard; Nathalie Dagoneau; Lauren W. Wang; Claire Perrot; Yanick J. Crow; Florence Bauer; Elisabeth Flori; Catherine Prost-Squarcioni; Deborah Krakow; Gaoxiang Ge; Daniel S. Greenspan; Damien Bonnet; Martine Le Merrer; Arnold Munnich; Suneel S. Apte; Valérie Cormier-Daire

Geleophysic dysplasia is an autosomal recessive disorder characterized by short stature, brachydactyly, thick skin and cardiac valvular anomalies often responsible for an early death. Studying six geleophysic dysplasia families, we first mapped the underlying gene to chromosome 9q34.2 and identified five distinct nonsense and missense mutations in ADAMTSL2 (a disintegrin and metalloproteinase with thrombospondin repeats–like 2), which encodes a secreted glycoprotein of unknown function. Functional studies in HEK293 cells showed that ADAMTSL2 mutations lead to reduced secretion of the mutated proteins, possibly owing to the misfolding of ADAMTSL2. A yeast two-hybrid screen showed that ADAMTSL2 interacts with latent TGF-β–binding protein 1. In addition, we observed a significant increase in total and active TGF-β in the culture medium as well as nuclear localization of phosphorylated SMAD2 in fibroblasts from individuals with geleophysic dysplasia. These data suggest that ADAMTSL2 mutations may lead to a dysregulation of TGF-β signaling and may be the underlying mechanism of geleophysic dysplasia.


American Journal of Human Genetics | 2011

Mutations in the TGFβ Binding-Protein-Like Domain 5 of FBN1 Are Responsible for Acromicric and Geleophysic Dysplasias

Carine Le Goff; Clémentine Mahaut; Lauren W. Wang; Slimane Allali; Avinash Abhyankar; Sacha A. Jensen; Louise Zylberberg; Gwenaëlle Collod-Béroud; Damien Bonnet; Yasemin Alanay; Angela F. Brady; Marie-Pierre Cordier; Koenraad Devriendt; David Geneviève; Pelin Özlem Simsek Kiper; Hiroshi Kitoh; Deborah Krakow; Sally Ann Lynch; Martine Le Merrer; André Mégarbané; Geert Mortier; Sylvie Odent; Michel Polak; Marianne Rohrbach; David Sillence; Irene Stolte-Dijkstra; Andrea Superti-Furga; David L. Rimoin; Vicken Topouchian; Sheila Unger

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFβ-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFβ signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFβ signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


American Journal of Human Genetics | 1999

COL9A3: A Third Locus for Multiple Epiphyseal Dysplasia

Petteri Paassilta; Jaana Lohiniva; Susanna Annunen; Jacky Bonaventure; Martine Le Merrer; Lori Pai; Leena Ala-Kokko

Multiple epiphyseal dysplasia (MED), an autosomal dominant osteochondrodysplasia, is a clinically and genetically heterogeneous disorder characterized by mild short stature and early-onset osteoarthritis. The phenotypic spectrum includes the mild Ribbing type, the more severe Fairbank type, and some unclassified forms. Linkage studies have identified two loci for MED. One of these, EDM1, is on chromosome 19, in a region that contains the cartilage oligomeric matrix protein (COMP) gene. Mutations have been identified in this gene in patients with the Ribbing type, the Fairbank type, and unclassified forms of MED. The second locus, EDM2, maps to chromosome 1, in a region spanning COL9A2. Recently, a splice-site mutation was found in COL9A2, causing skipping of exon 3 in one family with MED. Because of the exclusion of the EDM1 and EDM2 loci in some families, the existence of a third locus has been postulated. We report here one family with MED, evaluated clinically and radiologically and tested for linkage with candidate genes, including COMP, COL9A1, COL9A2, and COL9A3. No linkage was found with COMP, COL9A1, or COL9A2, but an inheritance pattern consistent with linkage was observed with COL9A3. Mutation analysis of COL9A3 identified an A-->T transversion in the acceptor splice site of intron 2 in affected family members. The mutation led to skipping of exon 3 and an in-frame deletion of 12 amino acid residues in the COL3 domain of the alpha3(IX) chain and thus appeared to be similar to that reported for COL9A2. This is the first disease-causing mutation identified in COL9A3. Our results also show that COL9A3, located on chromosome 20, is a third locus for MED.


American Journal of Human Genetics | 2005

Antenatal Presentation of Bardet-Biedl Syndrome May Mimic Meckel Syndrome

Houda Karmous-Benailly; Jelena Martinovic; Marie-Claire Gubler; Yoann Sirot; Laure Clech; Catherine Ozilou; Joëlle Augé; Nora Brahimi; Heather Etchevers; Eric Detrait; Chantal Esculpavit; Sophie Audollent; Géraldine Goudefroye; Marie Gonzales; Julia Tantau; Philippe Loget; Madeleine Joubert; Dominique Gaillard; Corinne Jeanne‐Pasquier; Anne-Lise Delezoide; Marie-Odile Peter; Ghislaine Plessis; Brigitte Simon‐Bouy; Hélène Dollfus; Martine Le Merrer; Arnold Munnich; Férechté Encha-Razavi; Michel Vekemans; Tania Attié-Bitach

Bardet-Biedl syndrome (BBS) is a multisystemic disorder characterized by postaxial polydactyly, progressive retinal dystrophy, obesity, hypogonadism, renal dysfunction, and learning difficulty. Other manifestations include diabetes mellitus, heart disease, hepatic fibrosis, and neurological features. The condition is genetically heterogeneous, and eight genes (BBS1-BBS8) have been identified to date. A mutation of the BBS1 gene on chromosome 11q13 is observed in 30%-40% of BBS cases. In addition, a complex triallelic inheritance has been established in this disorder--that is, in some families, three mutations at two BBS loci are necessary for the disease to be expressed. The clinical features of BBS that can be observed at birth are polydactyly, kidney anomaly, hepatic fibrosis, and genital and heart malformations. Interestingly, polydactyly, cystic kidneys, and liver anomalies (hepatic fibrosis with bile-duct proliferation) are also observed in Meckel syndrome, along with occipital encephalocele. Therefore, we decided to sequence the eight BBS genes in a series of 13 antenatal cases presenting with cystic kidneys and polydactyly and/or hepatic fibrosis but no encephalocele. These fetuses were mostly diagnosed as having Meckel or Meckel-like syndrome. In six cases, we identified a recessive mutation in a BBS gene (three in BBS2, two in BBS4, and one in BBS6). We found a heterozygous BBS6 mutation in three additional cases. No BBS1, BBS3, BBS5, BBS7, or BBS8 mutations were identified in our series. These results suggest that the antenatal presentation of BBS may mimic Meckel syndrome.


Clinical Genetics | 2008

Incomplete penetrance and expressivity skewing in hereditary multiple exostoses

Laurence Legeai-Mallet; Arnold Munnich; Pierre Maroteaux; Martine Le Merrer

Hereditary multiple exostosis (EXT) is an autosomal dominant skeletal disorder characterized by the formation of cartilage‐capped prominences developing from the juxta‐epiphyseal regions of the long bones and causing orthopedic deformities and occasionally sarcomatous degeneration. Reviewing a large cohort of 175 EXT patients referred to us over the last 40 years (1955–1995), we found 109 familial forms (62%) and 66 isolated cases (38%). The disease is consistently diagnosed before the age of 12 years and the risk of malignancy, although increased, is quite modest in our series (0.57%). The observation of seven unaffected individuals (six females, one male) with a family history and affected offspring supports the incomplete penetrance of the disease. Moreover, the observation of an unequal sex‐ratio with a preponderance of males among probands in this series (103: 72, p < 0.02) and in all series reported to date (198: 133, p < 0.001) gives support to the variable penetrance of EXT genes among sexes. Whether this incomplete penetrance is associated with one of the disease genes recently identified in EXT is currently under investigation.


American Journal of Human Genetics | 2012

Exome Sequencing Identifies PDE4D Mutations as Another Cause of Acrodysostosis

Caroline Michot; Carine Le Goff; Alice Goldenberg; Avinash Abhyankar; Céline Klein; Esther Kinning; Anne-Marie Guerrot; Philippe Flahaut; Alice Duncombe; Genevieve Baujat; Stanislas Lyonnet; Caroline Thalassinos; Patrick Nitschke; Jean-Laurent Casanova; Martine Le Merrer; Arnold Munnich; Valérie Cormier-Daire

Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368*]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368(∗)] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.

Collaboration


Dive into the Martine Le Merrer's collaboration.

Top Co-Authors

Avatar

Arnold Munnich

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Stanislas Lyonnet

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carine Le Goff

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah Krakow

University of California

View shared research outputs
Top Co-Authors

Avatar

Anna Pelet

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Geneviève Baujat

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge