Marty D. Spranger
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marty D. Spranger.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Marty D. Spranger; Abhinav C. Krishnan; Phillip D. Levy; Donal S. O’Leary; Scott A. Smith
Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013
Marty D. Spranger; Javier A. Sala-Mercado; Matthew Coutsos; Jasdeep Kaur; Doug Stayer; Robert A. Augustyniak; Donal S. O'Leary
Muscle metaboreflex activation (MMA) during submaximal dynamic exercise in normal individuals increases mean arterial pressure (MAP) via increases in cardiac output (CO) with little peripheral vasoconstriction. The rise in CO occurs primarily via increases in heart rate (HR) with maintained or slightly increased stroke volume. When the reflex is sustained during recovery (postexercise muscle ischemia, PEMI), HR declines yet MAP remains elevated. The role of CO in mediating the pressor response during PEMI is controversial. In seven chronically instrumented canines, steady-state values with MMA during mild exercise (3.2 km/h) were observed by reducing hindlimb blood flow by ~60% for 3-5 min. MMA during exercise was followed by 60 s of PEMI. Control experiments consisted of normal exercise and recovery. MMA during exercise increased MAP, HR, and CO by 55.3 ± 4.9 mmHg, 42.5 ± 6.9 beats/min, and 2.5 ± 0.4 l/min, respectively. During sustained MMA via PEMI, MAP remained elevated and CO remained well above the normal recovery levels. Neither MMA during dynamic exercise nor during PEMI significantly affected peripheral vascular conductance. We conclude that the sustained increase in MAP during PEMI is driven by a sustained increase in CO not peripheral vasoconstriction.
American Journal of Physiology-heart and Circulatory Physiology | 2013
Javier A. Sala-Mercado; Marty D. Spranger; Rania Abu-Hamdah; Jasdeep Kaur; Matthew Coutsos; Douglas Stayer; Robert A. Augustyniak; Donal S. O'Leary
Sympathoactivation may be excessive during exercise in subjects with hypertension, leading to increased susceptibility to adverse cardiovascular events, including arrhythmias, infarction, stroke, and sudden cardiac death. The muscle metaboreflex is a powerful cardiovascular reflex capable of eliciting marked increases in sympathetic activity during exercise. We used conscious, chronically instrumented dogs trained to run on a motor-driven treadmill to investigate the effects of hypertension on the mechanisms of the muscle metaboreflex. Experiments were performed before and 30.9 ± 4.2 days after induction of hypertension, which was induced via partial, unilateral renal artery occlusion. After induction of hypertension, resting mean arterial pressure was significantly elevated from 98.2 ± 2.6 to 141.9 ± 7.4 mmHg. The hypertension was caused by elevated total peripheral resistance. Although cardiac output was not significantly different at rest or during exercise after induction of hypertension, the rise in cardiac output with muscle metaboreflex activation was significantly reduced in hypertension. Metaboreflex-induced increases in left ventricular function were also depressed. These attenuated cardiac responses caused a smaller metaboreflex-induced rise in mean arterial pressure. We conclude that the ability of the muscle metaboreflex to elicit increases in cardiac function is impaired in hypertension, which may contribute to exercise intolerance.
Heart | 2015
David Viau; Javier A. Sala-Mercado; Marty D. Spranger; Donal S. O'Leary; Phillip D. Levy
While acute heart failure (AHF) is often regarded as a single disorder, an evolving understanding recognises the existence of multiple phenotypes with varied pathophysiological alterations. Herein we discuss hypertensive AHF and provide insight into a mechanism where acute fluid redistribution is caused by a disturbance in the ventricular–vascular coupling relationship. In this relationship, acute alterations in vascular elasticity, vasoconstriction and reflected pulse waves lead to increases in cardiac work and contribute to decompensated LV function with associated subendocardial ischaemia and end-organ damage. Chronic predisposing factors (neurohormonal activity, nitric oxide insensitivity, arterial stiffening) and physiological stressors (sympathetic surge, volume overload, physical exertion) that are causally linked to acute symptom onset are discussed. Lastly, we review treatment options including both nitrovasodilators and promising novel therapeutics, and discuss future directions in the management of this phenotypic variant.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Jasdeep Kaur; Marty D. Spranger; Robert L. Hammond; Abhinav C. Krishnan; Alberto Alvarez; Robert A. Augustyniak; Donal S. O'Leary
Muscle metaboreflex-induced increases in mean arterial pressure (MAP) during submaximal dynamic exercise are mediated principally by increases in cardiac output. To what extent, if any, the peripheral vasculature contributes to this rise in MAP is debatable. In several studies, we observed that in response to muscle metaboreflex activation (MMA; induced by partial hindlimb ischemia) a small but significant increase in vascular conductance occurred within the nonischemic areas (calculated as cardiac output minus hindlimb blood flow and termed nonischemic vascular conductance; NIVC). We hypothesized that these increases in NIVC may stem from a metaboreflex-induced release of epinephrine, resulting in β2-mediated dilation. We measured NIVC and arterial plasma epinephrine levels in chronically instrumented dogs during rest, mild exercise (3.2 km/h), and MMA before and after β-blockade (propranolol; 2 mg/kg), α1-blockade (prazosin; 50 μg/kg), and α1 + β-blockade. Both epinephrine and NIVC increased significantly from exercise to MMA: 81.9 ± 18.6 to 141.3 ± 22.8 pg/ml and 33.8 ± 1.5 to 37.6 ± 1.6 ml·min(-1)·mmHg(-1), respectively. These metaboreflex-induced increases in NIVC were abolished after β-blockade (27.6 ± 1.8 to 27.5 ± 1.7 ml·min(-1)·mmHg(-1)) and potentiated after α1-blockade (36.6 ± 2.0 to 49.7 ± 2.9 ml·min(-1)·mmHg(-1)), while α1 + β-blockade also abolished any vasodilation (33.7 ± 2.9 to 30.4 ± 1.9 ml·min(-1)·mmHg(-1)). We conclude that MMA during mild dynamic exercise induces epinephrine release causing β2-mediated vasodilation.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Jasdeep Kaur; Tiago M. Machado; Alberto Alvarez; Abhinav C. Krishnan; Hanna W. Hanna; Yasir H. Altamimi; Danielle Senador; Marty D. Spranger; Donal S. O'Leary
Metabolite accumulation due to ischemia of active skeletal muscle stimulates group III/IV chemosensitive afferents eliciting reflex increases in arterial blood pressure and sympathetic activity, termed the muscle metaboreflex. We and others have previously demonstrated sympathetically mediated vasoconstriction of coronary, renal, and forelimb vasculatures with muscle metaboreflex activation (MMA). Whether MMA elicits vasoconstriction of the ischemic muscle from which it originates is unknown. We hypothesized that the vasodilation in active skeletal muscle with imposed ischemia becomes progressively restrained by the increasing sympathetic vasoconstriction during MMA. We activated the metaboreflex during mild dynamic exercise in chronically instrumented canines via graded reductions in hindlimb blood flow (HLBF) before and after α1-adrenergic blockade [prazosin (50 μg/kg)], β-adrenergic blockade [propranolol (2 mg/kg)], and α1 + β-blockade. Hindlimb resistance was calculated as femoral arterial pressure/HLBF. During mild exercise, HLBF must be reduced below a threshold level before the reflex is activated. With initial reductions in HLBF, vasodilation occurred with the imposed ischemia. Once the muscle metaboreflex was elicited, hindlimb resistance increased. This increase in hindlimb resistance was abolished by α1-adrenergic blockade and exacerbated after β-adrenergic blockade. We conclude that metaboreflex activation during submaximal dynamic exercise causes sympathetically mediated α-adrenergic vasoconstriction in ischemic skeletal muscle. This limits the ability of the reflex to improve blood flow to the muscle.
American Journal of Physiology-heart and Circulatory Physiology | 2016
Jasdeep Kaur; Alberto Alvarez; Hanna W. Hanna; Abhinav C. Krishnan; Danielle Senador; Tiago M. Machado; Yasir H. Altamimi; Abe T. Lovelace; Maryetta D. Dombrowski; Marty D. Spranger; Donal S. O'Leary
The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.
American Journal of Physiology-heart and Circulatory Physiology | 2017
Marty D. Spranger; Jasdeep Kaur; Javier A. Sala-Mercado; Abhinav C. Krishnan; Rania Abu-Hamdah; Alberto Alvarez; Tiago M. Machado; Robert A. Augustyniak; Donal S. O’Leary
Increases in myocardial oxygen consumption during exercise mainly occur via increases in coronary blood flow (CBF) as cardiac oxygen extraction is high even at rest. However, sympathetic coronary constrictor tone can limit increases in CBF. Increased sympathetic nerve activity (SNA) during exercise likely occurs via the action of and interaction among activation of skeletal muscle afferents, central command, and resetting of the arterial baroreflex. As SNA is heightened even at rest in subjects with hypertension (HTN), we tested whether HTN causes exaggerated coronary vasoconstriction in canines during mild treadmill exercise with muscle metaboreflex activation (MMA; elicited by reducing hindlimb blood flow by ~60%) thereby limiting increases in CBF and ventricular performance. Experiments were repeated after α1-adrenergic blockade (prazosin; 75 µg/kg) and in the same animals following induction of HTN (modified Goldblatt 2K1C model). HTN increased mean arterial pressure from 97.1 ± 2.6 to 132.1 ± 5.6 mmHg at rest and MMA-induced increases in CBF, left ventricular dP/dtmax, and cardiac output were markedly reduced to only 32 ± 13, 26 ± 11, and 28 ± 12% of the changes observed in control. In HTN, α1-adrenergic blockade restored the coronary vasodilation and increased in ventricular function to the levels observed when normotensive. We conclude that exaggerated MMA-induced increases in SNA functionally vasoconstrict the coronary vasculature impairing increases in CBF, which limits oxygen delivery and ventricular performance in HTN. NEW & NOTEWORTHY We found that metaboreflex-induced increases in coronary blood flow and ventricular contractility are attenuated in hypertension. α1-Adrenergic blockade restored these parameters toward normal levels. These findings indicate that the primary mechanism mediating impaired metaboreflex-induced increases in ventricular function in hypertension is accentuated coronary vasoconstriction.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015
Marty D. Spranger; Jasdeep Kaur; Javier A. Sala-Mercado; Tiago M. Machado; Abhinav C. Krishnan; Alberto Alvarez; Donal S. O'Leary
During dynamic exercise, muscle metaboreflex activation (MMA; induced via partial hindlimb ischemia) markedly increases mean arterial pressure (MAP), and MAP is sustained when the ischemia is maintained following the cessation of exercise (postexercise muscle ischemia, PEMI). We previously reported that the sustained pressor response during PEMI in normal individuals is driven by a sustained increase in cardiac output (CO) with no peripheral vasoconstriction. However, we have recently shown that the rise in CO with MMA is significantly blunted in hypertension (HTN). The mechanisms sustaining the pressor response during PEMI in HTN are unknown. In six chronically instrumented canines, hemodynamic responses were observed during rest, mild exercise (3.2 km/h), MMA, and PEMI in the same animals before and after the induction of HTN [Goldblatt two kidney, one clip (2K1C)]. In controls, MAP, CO and HR increased with MMA (+52 ± 6 mmHg, +2.1 ± 0.3 l/min, and +37 ± 7 beats per minute). After induction of HTN, MAP at rest increased from 97 ± 3 to 130 ± 4 mmHg, and the metaboreflex responses were markedly attenuated (+32 ± 5 mmHg, +0.6 ± 0.2 l/min, and +11 ± 3 bpm). During PEMI in HTN, HR and CO were not sustained, and MAP fell to normal recovery levels. We conclude that the attenuated metaboreflex-induced HR, CO, and MAP responses are not sustained during PEMI in HTN.
American Journal of Physiology-heart and Circulatory Physiology | 2016
Marty D. Spranger; Abhinav C. Krishnan; Phillip D. Levy; Donal S. O’Leary; Scott A. Smith
reply: In their letter, Jessee et al. ([6][1]) address an important methodological concern germane to blood blow restriction (BFR) training raised in our recent review ([10][2]), namely, the standardization of BFR cuff pressure. Jessee et al. acknowledge that a generalized cuff pressure could